Ecuaciones de Euler (sólidos)

En mecánica, las ecuaciones de Euler describen el movimiento de un sólido rígido en rotación en un sistema de referencia solidario con el sólido. Matemáticamente tienen la forma:


donde son las componentes vectoriales del momento o momento dinámico total aplicado, son los momentos principales de inercia y son las componentes del vector velocidad angular según los ejes principales de inercia.

Motivación y derivación

En un sistema de referencia inercial la derivada del momento angular es igual al momento dinámico o momento de fuerzas aplicado:


Donde es el tensor de momentos de inercia. Sin embargo, aunque la ecuación anterior es universalmente válida, no resulta útil en la práctica para calcular el movimiento puesto que generalmente, tanto como varían con el tiempo.

Sin embargo, el problema anterior se resuelve si consideramos un sistema de referencia no-inercial solidario con el sólido rígido en rotación, porque respecto a este sistema de referencia el tensor de [momentos de] inercia es constante y sólo la velocidad angular varía con el tiempo. De hecho de todos los posibles sistemas de este tipo tomaremos por simplicidad y conveniencia matemática uno cuyos ejes coincidan con las direcciones principales de inercia (que permiten forman un triedro rectángulo). En estas condiciones el vector momento angular puede escribirse como:


O también


Donde son los momentos de inercia principales, son los vectores unitarios en la dirección de los ejes principales de inercia y son las componentes de la velocidad angular expresadas en la base formada por los vectores unitarios anteriores. En un sistema no-inercial giratorio, la derivada temporal debe ser reemplazada por otra expresión que de cuenta también de las fuerzas ficticias asociadas a la no-inercialidad del sistema:

Donde el subíndice indica que una magnitud se computa en el sistema no-inercial rotatorio. Substituyendo , tomando el producto vectorial y usando el hecho de que los momentos principales de inercia no varían con el tiempo, llegamos a las ecuaciones de Euler:

Other Languages