Ecuación diferencial ordinaria

La trayectoria de un proyectil lanzado desde un cañón sigue una curva definida por una ecuación diferencial ordinaria que se deriva de la segunda ley de Newton.

En matemáticas, una ecuación diferencial ordinaria (comúnmente abreviada "EDO") es la ecuación diferencial que relaciona una función desconocida de una variable independiente con sus derivadas. Es decir, una sola variable independiente (a diferencia de las ecuaciones diferenciales parciales que involucran derivadas parciales de varias variables), y una o más de sus derivadas respecto de tal variable.

Introducción

Recursos de la física, la ingeniería, la economía, la meteorología y en aplicaciones como las de modelado en ciencias, se las estudia en diversas áreas (como geometría, mecánica y astronomía) y perspectivas.

Matemáticamente es de crucial interés el conjunto de funciones que verifican la ecuación y establecen sus soluciones. Sólo las ecuaciones diferenciales más sencillas admiten soluciones dadas por fórmulas explícitas (como las lineales asociadas a una teoría desarrollada prácticamente por completo). No obstante, pueden determinarse algunas propiedades de las soluciones de una ecuación diferencial sin requerirse su formulación exacta, clave para resolver la mayoría de las ecuaciones diferenciales no lineales de sumo interés en numeroso casos. Casos carentes de una fórmula auto-contenida para su solución que se suple con la aproximada numéricamente con el auxilio crucial de las computadoras.

La matemática pura centra el foco formal en la solución, su existencia y si es o no única. La aplicada controla la validez de los métodos para la solución numéricamente aproximada y el rigor de las justificaciones con que se los sustenta.
La teoría de los sistemas dinámicos prioriza el análisis cualitativo de sistemas descriptos por ecuaciones diferenciales mientras se han venido sumando numerosos métodos numéricos para determinar soluciones con un grado dado de precisión.

En ingeniería, ciencias naturales y sociales hay muchos problemas de interés que, cuando se plantean, exigen la determinación de una función la cual debe verificar una ecuación que involucra derivadas de la función desconocida. Dichas ecuaciones se denominan ecuaciones diferenciales. Tal vez el ejemplo más conocido es la ley de Newton:[1]

Importancia

Isaac Newton se daba cuenta de la importancia que tenían las ecuaciones diferenciales para el análisis de los fenómenos de la naturaleza. En sus renombrados "Principios matemáticos de la filosofía natural" (1687) que engloban mecánica newtoniana, empiezan con la ecuación diferencial del movimiento. Esta ecuación se considera como axioma, mientras que los planteamientos posteriores de la mecánica son, de hecho, teoremas que se derivan de dicho axioma, así como de la ley de gravitación universal que se desgaja de los hechos experimentales (leyes de Kepler) y del mencionado axioma: md2s/dt2 = F.[2]

Una ecuación diferencial ordinaria (EDO) puede plantearse, siendo F una relación o función, como

( 1a)

... para representar la EDO en que la función incógnita (también conocida como variable dependiente), lo es de una única variable independente.

En general, una ecuación diferencial lineal de orden n puede formularse, siendo cada una función dependiente de t, como:

( 1b)

Una solución de la ecuación (1a) o (1b) será una "familia" de curvas o funciones del tipo que substituida dentro de la ecuación la convierte en una igualdad en la que todos los términos son conocidos.

En la formulación más simple, la función incógnita es una función para cierto valor real o complejo pero con mayor generalidad, puede serlo para el valor de un vector o matriz, lo que lleva a considerar un sistema de ecuaciones diferenciales ordinarias (EDO) para una única función.

Other Languages
Bahasa Indonesia: Persamaan diferensial biasa