Ecuación de Klein-Gordon

La ecuación de Klein-Gordon o ecuación K-G debe su nombre a Oskar Klein y Walter Gordon, y es la ecuación que describe un campo escalar libre en teoría cuántica de campos.

Historia

La ecuación fue llamada así en honor a los físicos Oskar Klein y Walter Gordon, quienes en 1926 propusieron que ella describe a los electrones relativistas. Otros autores haciendo similares afirmaciones en ese mismo año fueron Vladimir Fock, Johann Kudar, Théophile de Donder y Frans-H. van den Dungen, y Louis de Broglie. A pesar de que la ecuación de Dirac describe al electrón en rotación (spinning), la ecuación de Klein-Gordon describe correctamente a los piones sin espín. Los piones son partículas compuestas; una de ellas es el bosón de Higgs, un bosón de espín cero, de acuerdo con el Modelo Estándar.

La ecuación de Klein-Gordon fue propuesta originalmente por Erwin Schrödinger como ecuación para la función de onda de una partícula cuántica. Sin embargo, puesto que la ecuación de Klein-Gordon no admitía una interpretación probabilista adecuada entre otros problemas, Schrödinger consideró más adecuado pasar a una versión no relativista de la ecuación que es la que actualmente se conoce como ecuación de Schrödinger.

Más tarde la función de onda que aparece en la ecuación de Klein-Gordon sería apropiadamente interpretada como la densidad de un campo bosónico cargado de espín cero. Así el hecho de que la "densidad de probabilidad" fuera negativa era interpretada como una densidad de carga negativa y los problemas de interpretación como probabilidades de presencia desaparecían, aunque persistían otros de los problemas mencionados más adelante. Sin embargo, dentro de la teoría cuántica de campos la ecuación de Klein-Gordon sí resultó útil.

Other Languages