Dominio euclídeo

En matemáticas, más concretamente en álgebra abstracta y teoría de anillos, un dominio euclídeo o anillo euclídeo (usualmente abreviado DE) es un anillo conmutativo sobre el que se puede definir una función euclidea (explicada más adelante) que permite generalizar la noción de división euclidea usual de los números enteros. Este algoritmo de Euclides generalizado se puede utilizar para los mismo fines que el algoritmo de Euclides original en el anillo de los enteros: en un dominio euclídeo se puede utilizar este algoritmo para calcular el máximo común divisor de dos elementos cualesquiera. En particular, el máximo común divisor de dos elementos siempre existe —lo cual no es en general cierto para un anillo arbitrario—, y puede ser expresado como una combinación lineal de ellos ( identidad de Bezout).[3]

Definición

Un dominio euclídeo es un par donde es un dominio de integridad y es una aplicación que cumple las siguientes dos condiciones:[4]

  1. Para cualesquiera tales que se cumple que existen de manera que

( 1)

; \ tales que , o bien
  1. Para dos elementos cualesquiera cualesquiera :

( 2)

A los elementos y se les denomina respectivamente cociente y resto, como en la división usual.

Definiciones alternativas

Algunos autores consideran que la condición (2) es redundante y puede ser omitida de la definición. En efecto, si en un dominio integro se puede definir una función que cumple la primera condición, entonces siempre es posible definir otra que cumpla también la segunda, en particular:[5]

Puesto que la unicidad no es imprescindible, la condición (1) por sí sola implica que el dominio es euclídeo.

Terminología

Diversos autores se refieren a la función —que define un dominio euclídeo—, con diferentes nombres: «aplicación (o función) euclídea», «función de medida» (o de tamaño)[8] si bien esta denominación puede inducir a confusión con la norma vectorial que define la distancia usual.

Es importante destacar que la función de norma solamente toma valores enteros, aun cuando en algún caso particular pueda extenderse a todo el conjunto de los números reales.

Other Languages