Distribución de Bernoulli

Bernoulli
Parámetros
Dominio
Función de probabilidad (fp)
Función de distribución (cdf)
Media
Mediana N/A
Moda
Varianza
Coeficiente de simetría
Curtosis
Entropía
Función generadora de momentos (mgf)
Función característica
[ editar datos en Wikidata]

En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito () y valor 0 para la probabilidad de fracaso ().

Si es una variable aleatoria que mide el "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria se distribuye como una Bernoulli de parámetro .

Su función de probabilidad viene definida por:

La fórmula será:

Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayos repetidos.

Propiedades características

Esperanza matemática:

Varianza:

Función generatriz de momentos:

Función característica:

Moda:

0 si q > p (hay más fracasos que éxitos)
1 si q < p (hay más éxitos que fracasos)
0 y 1 si q = p (los dos valores, pues hay igual número de fracasos que de éxitos)


Asimetría (Sesgo):

Curtosis:

La Curtosis tiende a infinito para valores de cercanos a 0 ó a 1, pero para la distribución de Bernoulli tiene un valor de curtosis menor que el de cualquier otra distribución, igual a -2.


Caracterización por la binomial:

 ; donde es una distribución binomial.


Other Languages