Desigualdad de Cauchy-Bunyakovsky-Schwarz

En matemáticas, la desigualdad de Cauchy-Bunyakovsky-Schwarz, también conocida como desigualdad de Schwarz, desigualdad de Cauchy o desigualdad de Cauchy-Schwarz, es una desigualdad que se encuentra en diversas áreas de la matemática, como el álgebra lineal,[3]

La desigualdad para sumas fue publicada por Augustin Louis Cauchy ( 1821), mientras que la correspondiente desigualdad para integrales fue establecida por Viktor Yakovlevich Bunyakovsky ( 1859) y redescubierta por Hermann Amandus Schwarz ( 1888).

Desigualdad de Cauchy-Schwarz

Sea un espacio vectorial complejo con producto escalar. Los vectores , cumplen la desigualdad de Cauchy-Schwarz.

Donde es el producto escalar.

Demostración

Tomemos la combinación de vectores , con . El producto de este vector por sí mismo es siempre mayor o igual que cero, por las propiedades del producto escalar.

Aplicando la linealidad por la derecha del producto escalar, se puede desarrollar la expresión anterior.

Esta desigualdad debe cumplirse para cualquier valor de los escalares y . En particular, se cumple para ,. Sustituyendo estos valores en la desigualdad:

Y finalmente:

Q.E.D

La desigualdad se satura (se vuelve igualdad) si y solo si los vectores son linealmente dependientes entre sí.

Other Languages