Derivada direccional

En análisis matemático, la derivada direccional (o bien derivada según una dirección) de una función multivariable, en la dirección de un vector dado, representa la tasa de cambio de la función en la dirección de dicho vector. Este concepto generaliza las derivadas parciales, puesto que estas son derivadas direccionales según la dirección de los respectivos ejes coordenados.

Definición

Un diagrama de curvas de nivel de la ecuación , mostrando el vector gradiente en negro, y el vector unitario escalado por la derivada direccional en la dirección de en anaranjado. El vector gradiente es más largo porque apunta en la dirección de la mayor tasa de incremento de una función.

Definición general

La derivada direccional de una función real de n variables:

en la dirección del vector:

es la función definida por el límite:

Si la función es diferenciable, puede ser escrita en término de su gradiente

donde "" denota el producto escalar o producto punto entre vectores. En cualquier punto , la derivada direccional de f representa intuitivamente la tasa de cambio de f con respecto al tiempo cuando se está moviendo a una velocidad y dirección dada por en dicho punto.

Definición solo en la dirección de un vector

Algunos autores definen la derivada direccional con respecto al vector después de la normalización, ignorando así su magnitud. En este caso:

Si la función es diferenciable, entonces

Esta definición tiene algunas desventajas: su aplicabilidad está limitada a un vector de norma definida y no nula. Además es incompatible con la notación empleada en otras ramas de la matemática, física e ingeniería por lo que debe utilizarse cuando lo que se quiere es la tasa de incremento de por unidad de distancia.

Restricción al vector unitario

Algunos autores restringen la definición de la derivada direccional con respecto a un vector unitario. Con esta restricción, las dos definiciones anteriores se convierten en una misma.

Demostración

El caso más sencillo de la derivada direccional se da en el espacio tridimensional. Supóngase que existe una función diferenciable . La derivada direccional según la dirección de un vector unitario es:


El primero de estos límites puede calcularse mediante el cambio lo cual lleva, por ser diferenciable la función[1] f, a:

Procediendo análogamente para el otro límite se tiene que:

Resultado que trivialmente coincide con el producto escalar del gradiente por el vector :

Other Languages