Danio rerio

Symbol question.svg
 
Pez cebra
Zebrafisch.jpg
Ejemplar con fenotipo normal
GloFish.jpg
Ejemplares de D. rerio fluorescentes modificados genéticamente
Estado de conservación
Preocupación menor (LC)
Preocupación menor ( UICN 3.1)[1]
Taxonomía
Reino: Animalia
Filo: Chordata
Clase: Actinopterygii
Orden: Cypriniformes
Familia: Cyprinidae
Género: Danio
Especie: D. rerio
( Hamilton-Buchanan, 1822)
Sinonimia
  • Barilius rerio
  • Brachydanio rerio
  • Cyprinus chapalio
  • Cyprinus rerio
  • Danio lineatus
  • Nuria rerio
  • Perilampus striatus
[ editar datos en Wikidata]

El pez cebra o danio cebra (Danio rerio) es un ciprínido[7]

Son peces alargados, fusiformes, con una única aleta dorsal, boca dirigida hacia arriba y un par de finas barbillas que son difíciles de ver salvo que el animal esté parado. Presentan dimorfismo sexual tanto en el tamaño como en el color. La hembra suele ser más grande que el macho y tiene un color de fondo plateado. El macho, sin embargo, adquiere tonalidades más doradas. Sobre los flancos y longitudinalmente se presentan de 5 a 9 bandas de color azul oscuro que comienzan detrás del opérculo y llegan hasta el final del animal (incluyendo la cola), dándole un aspecto cebrado del que toma el nombre. El opérculo es azulado y la zona ventral de un tono blanquecino rosado. Es transparente, lo que permite visualizar sin problemas la evolución de experimentos.[8] Alcanza 5  cm como talla máxima.

Ontogenia

Segmentación

El pez cebra presenta cigotos de tipo telolecítico, por lo cual la segmentación ocurre solo en una región libre de vitelo denominada el blastodisco. Debido a que el cigoto presenta una gran cantidad de vitelo, las segmentaciones son incompletas y, dado que el blastodisco es la zona donde se dan los clivajes, se dice que esta segmentación es meroblástica discoidal.[9]

La fecundación del cigoto desencadena unas ondas de calcio que estimulan la contracción del citoesqueleto de actina, lo que ocasiona una distribución exclusiva del vitelo hacia el polo vegetal, dejando una región del polo animal libre de vitelo. Este proceso determina la formación del blastodisco.[10]

La primera división es ecuatorial y la segunda meridional. Las primeras divisiones son muy sincrónicas, rápidas y conforman el blastodermo, que se observa como un bulto de células en la parte apical o distal del cigoto.[9]

Hacia el décimo clivaje empieza la transición a blástula media. Esto se hace evidente gracias a que las divisiones celulares se hacen más lentas, menos sincrónicas, comienza la transcripción génica y las células o blastómeras empiezan a migrar[11] generando tres capas celulares distinguibles:

  • CSV (Capa Sincitial Vitelina): formada por la fusión de las células en el borde vegetal del blastodermo, se fusionan con la célula vitelínica subyacente. Esta capa a su vez se diferencia en CSV interna y CSV externa.[9]
  • Capa de la envoltura: compuesta por las células más superficiales del blastodermo. Esta capa se convertirá en el peridermo.[9]

Entre la CSV y la capa de la envoltura se encuentran ubicadas las células profundas que dan origen al embrión.[9]

Los mapas celulares de destino parecen establecerse antes de la gastrulación.[12]

Durante el estadio de blástula, las tubulinas (subunidades de los microtúbulos y componentes de los centrosomas) se mantienen en un estado oligomérico que evita que se ensamblen constituyendo microtúbulos. La cantidad de tubulina soluble aumenta durante la gastrulación. La γ-tubulina asociada a complejos de proteínas, puede estar involucrada en la regulación de las dinámicas de la tubulina durante la oogénesis y embriogénesis del pez cebra.[13]

Gastrulación

La gastrulación se caracteriza por varios movimientos dentro de los que se incluyen la epibolia, invaginación y delaminación.

El primer movimiento de gastrulación en el pez cebra es el de epibolia de las células del blastodermo sobre el vitelo. Durante este movimiento, las células internas del blastodermo migran hacia fuera para intercalarse y cubrir las células superficiales completamente y de manera autónoma.[14]

Durante la epibolía, un lado del blastodermo se engrosa. Este lado marcará el sitio de la futura superficie dorsal del embrión.[15]

Capas germinales

El engrosamiento del blastodermo, que luego originará la futura superficie dorsal del embrión, es denominada anillo germinal y se compone de dos capas:

Las células de estas dos capas se intercalan formando el escudo embrionario que precede al labio dorsal del embrión. Este escudo embrionario es homólogo al labio dorsal del blastoporo en anfibios; es decir, cumple la misma función organizadora que el labio dorsal del blastoporo.[16] Sin embargo, estas estructuras difieren en algunas de sus actividades: la placa precordal en peces parece estar involucrada en la formación de estructuras neurales ventrales, pero las regiones anteriores del cerebro se desarrollan en su ausencia, mientras que esto no se aplica para anfibios.

Los movimientos de las células del epiblasto y del hipoblasto forman otra capa celular conocida como cordamesodermo, que es el precursor de la notocorda y la quilla neural, la cual está compuesta por células del hipoblasto ubicadas hacia la línea media dorsal. Las células remanentes del epiblasto constituirán el ectodermo.[9]

Formación de eje dorsoventral

La región más importante en la formación del eje dorsoventral en Danio rerio, y en peces en general, es el escudo embrionario. Esta región engrosada puede convertir al mesodermo lateral y ventral en mesodermo dorsal y también puede convertir el ectodermo en neural en lugar de epidérmico.[17]

Bioquímica del eje dorsoventral

El eje dorsoventral se construye gracias a la acción de varias familias de proteínas, dentro de las que se encuentran:

  • BMP
  • Algunas Wnt

Las proteínas BMP y Wnt inducirán al ectodermo a convertirse en epidermis. Un ligando mutante denominado BMP2B induce a las células a adquirir destinos ventral y lateral. Dicho mutante es epistático. Wnt8 es otro mutante que lateraliza, posterioriza y ventraliza los tejidos del embrión.[9]

La notocorda secreta (factores que bloquean la inducción de estas familias de proteínas) permiten que el ectodermo se convierta en neural. Investigaciones previas sugirieron que uno de los factores que bloquean la inducción de BMP y Wnt, es el denominado Cordina (Chordin).[19]

Formación del eje anteroposterior

Al igual que en la formación del eje dorsoventral, las familias de proteínas que intervienen principalmete en su estableciemiento son las BMP y las Wnt, cuyos antagonistas incluyen factores como Cordina, Dickkopf y Nogina.

Neurulación

Es el proceso de conversión de la placa neural en tubo neural.

La neurulación del pez cebra incluye dos procesos conocidos como neurulación primaria y neurulación secundaria.

  • Neurulación primaria: se refiere a la proliferación, invaginación y separación de las células de la placa neural.
  • Neurulación secundaria: proceso mediante el cual el tubo neural se origina a partir de las células mesenquimáticas para formar un cordón sólido que posteriormente se cavita formando un tubo hueco.[9]

Desarrollo de las aletas

En Danio rerio, solo el tubo neural de la cola se construye por neurulación secundaria.[9]

Other Languages
العربية: دانيو مخطط
azərbaycanca: Danio rerio
български: Данио
brezhoneg: Danio rerio
bosanski: Zebrica
català: Peix zebra
Cebuano: Danio rerio
dansk: Zebrafisk
English: Zebrafish
euskara: Danio rerio
فارسی: گورخرماهی
suomi: Seeprakala
français: Poisson zèbre
galego: Peixe cebra
עברית: דג זברה
hrvatski: Zebrica
magyar: Zebradánió
Հայերեն: Դանիո-ռերիո
íslenska: Sebrafiskur
italiano: Danio rerio
Nederlands: Zebravis
norsk bokmål: Sebrafisk
português: Danio rerio
русский: Данио-рерио
srpskohrvatski / српскохрватски: Zebrica
Simple English: Zebra danio
slovenčina: Danio pruhované
svenska: Zebrafisk
Türkçe: Zebra balığı
українська: Даніо-реріо
Tiếng Việt: Danio rerio
Winaray: Danio rerio
中文: 斑馬魚