Cuerno de Gabriel

Render POV-Ray del cuerno de Gabriel (su código fuente está en: [2])

El cuerno de Gabriel (también llamado trompeta de Torricelli) es una figura geométrica que tiene la característica de poseer una superficie infinita pero un volumen finito. Es la superficie de revolución que se obtiene al girar, alrededor del eje X, el gráfico de la función F(x)=1/x, con dominio x ≥ 1.

Fue ideada por Evangelista Torricelli hacia 1641, que la bautizó como sólido hiberbólico agudo («solide hyperbolique aigu»).[1]

Historia

Imagen parcial del cuerno de Gabriel

En el momento de su descubrimiento, fue considerado una paradoja. Esta paradoja aparente ha sido descrita de modo informal señalando que sería necesaria una cantidad infinita de pintura para cubrir la superficie exterior, mientras que sería posible rellenar toda la figura con una cantidad finita de pintura y así cubrir esa superficie.

La solución de la paradoja es que un área infinita requiere una cantidad infinita de pintura si la capa de pintura tiene un grosor constante. Esto no se cumple en el interior del cuerno, ya que la mayor parte de la longitud de la figura no es accesible a la pintura, especialmente cuando su diámetro es menor que el de una molécula de pintura. Si se considera una pintura sin grosor, sería necesaria una cantidad infinita de tiempo para que ésta llegase hasta el «final» del cuerno.

En otras palabras, llegaría un momento en el que el espesor de la trompeta sería más pequeño que una molécula de pintura con lo que, digamos, una gota de pintura cubriría el resto de la superficie de la trompeta (aunque fuera infinito). Así, que la superficie de la trompeta sea infinita no implicaría que la cantidad de pintura tenga que ser infinita.

Pero la paradoja también tiene solución incluso si suponemos una materia divisible indefinidamente (o sea, si no existiesen los átomos). Si el grosor de la capa de pintura es variable y disminuye indefinidamente (tendiendo a cero), la cantidad de pintura se calcularía por una integral impropia que podría ser convergente. En este caso, el espesor de la capa de pintura forzosamente debería ser igual o menor al valor de y, lo que hace que la integral impropia, en este caso, sea convergente, es decir, se necesita una cantidad finita de pintura.

Other Languages