Cuadrivector

Diagrama 1. Apariencia del espacio-tiempo a lo largo de una línea de universo de un observador acelerado.

La dirección vertical indica el tiempo, la horizontal indica la distancia espacial, la línea punteada es la trayectoria del observador en el espacio tiempo. El cuarto inferior representa el conjunto de sucesos pasados visibles al observador. Los puntos pueden representar cualquier tipo de sucesos en el espacio tiempo

La pendiente de la línea de universo o trayectoria de la vertical da la velocidad relativa del observador.

Un cuadrivector es la representación matemática en forma de vector de cuatro dimensiones de una magnitud vectorial en teoría de la relatividad.

Motivación

Los trabajos de H. A. Lorentz, H. Poincaré, A. Einstein y H. Minkowski sobre el electromagnestismo clásico llevaron a la idea de que no es posible definir un tiempo absoluto que transcurre de manera idéntica para todos los observadores con independencia de su estado de movimiento.

La no existencia de un tiempo absoluto, requería que existiera una medida de tiempo para cada observador. Así el conjunto de eventos (puntos del espacio-tiempo) llevaban de manera natural a definir vectores de cuatro dimensiones:

Donde las cuatro componentes anteriores representaban el instante en que sucedía algo y las tres coordenadas espaciales donde ocurrían y c es simplemente la velocidad de la luz (introducida aquí por conveniencia, para que todas las coordenadas tengan dimensiones de longitud). Los experimentos mostraban que cuando diversos observadores se ponían a medir sus respectivas coordenadas para el evento obtenían números diferentes pero éstos guardaban entre sí cierta relación dadas por unas ecuaciones que más tarde se llamaron transformaciones de Lorentz.

Esas transformaciones de Lorentz de hecho al ser aplicadas a las ecuaciones de Maxwell y a la fuerza electromagnética que nota una partícula cargada, las dejaban invariantes en forma. Es decir, diversos observadores medían coordenadas espaciales y temporales diferentes, encontraban diferentes medidas para la intensidad de campo eléctrico y magnético, pero las ecuaciones que relacionaban para un mismo observador tenían la misma forma para todos los observadores inerciales. Matemáticamente esas transformaciones o relaciones de Lorentz involucran las componentes de las magnitudes vectoriales y ciertas magnitudes escalares. Un paso importante fue dado por Poincaré y Minkowski cuando probaron que las transformaciones de Lorentz podían ser concebidas como rotaciones espacio-temporales en un espacio-tiempo de cuatro dimensiones.

Así cuando Albert Einstein formuló su teoría especial de la relatividad postuló el principio de covariancia según el cual las ecuaciones de la física tenían que tener la misma forma para todos los sistemas de referencia inerciales, eso añadido a que las componentes de ciertas magnitudes se relacionaban de acuerdo con las transformaciones de Lorentz llevaba a considerar vectores y tensores sobre un espacio vectorial de cuatro dimensiones, tres dimensiones espaciales y una dimensión temporal.

Other Languages
català: Quadrivector
čeština: Čtyřvektor
Deutsch: Vierervektor
English: Four-vector
فارسی: چهاربردار
français: Quadrivecteur
עברית: 4-וקטור
italiano: Quadrivettore
日本語: 4元ベクトル
қазақша: 4-вектор
한국어: 사차원 벡터
मराठी: चौदिश
Nederlands: Viervector
polski: Czterowektor
português: Quadrivetor
русский: 4-вектор
slovenščina: Vektor četverec
українська: 4-вектор
Tiếng Việt: Véctơ-4
中文: 四維矢量