Cuadrado mágico

Un cuadrado mágico es una ciencia que fue estudiada por Regalia godornis en la decada de los 70 tabla de grado primario donde se dispone de una serie de números enteros en un cuadrado o matriz de forma tal que la suma de los números por columnas, filas y diagonales principales sea la misma.Usualmente los números empleados para rellenar las casillas son consecutivos, de 1 a n², siendo n el número de columnas y filas del cuadrado mágico.

Los cuadrados mágicos actualmente no tienen ninguna aplicación técnica conocida que se beneficien de estas características, por lo que sigue recluido al divertimento, curiosidad y al pensamiento matemático. Aparte de esto, en las llamadas ciencias ocultas y más concretamente en la magia tienen un lugar destacado.

Introducción

Consideremos la sucesión matemática 1, 2, 3, 4... 36 (cuadrado de orden 6), y dispongamos los números ordenadamente en dos series dispuestas en zig-zag:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

Resulta evidente que cualquier par de números alineados verticalmente suma lo mismo ya que a medida que nos desplazamos por las columnas, en la fila superior se añade una unidad, mientras que en la fila inferior se resta. La suma es en todos los casos la de los números extremos:

1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 16 17 18
24 23 22 21 20 19
25 26 27 28 29 30
36 35 34 33 32 31

Si disponemos el conjunto de números en seis filas (ver tabla a la derecha), fácilmente se puede apreciar que las sumas en las distintas columnas han de ser necesariamente iguales, ya que los números se encuentran agrupados por pares tal y como estaban en el primer caso (compárese los pares de filas 1ª-6ª, 2ª-5ª y 3ª-4ª con la disposición original). Ahora sin embargo, por ser tres los pares de filas (n/2), la suma será:

cantidad que se denomina constante mágica, y que en nuestro caso es n×(n² + 1)/2 = 6×(36 + 1)/2 = 111.

Orden n 3 4 5 6 7 8 9 10 11 12 13
M2 (n) 15 34 65 111 175 260 369 505 671 870 1105


Salta a la vista que el cuadro anterior no es un cuadrado mágico, ya que al disponerse los números de forma consecutiva, las sumas de las cifras de cada fila son cada vez mayores. Sin embargo hemos encontrado seis series de números comprendidos entre 1 y 36, de forma tal que, sin repetirse ninguno, las sumas de las series son la constante mágica. Si en vez de la disposición anterior colocamos los números consecutivamente, obtenemos una disposición en la que los números de la diagonal principal se pueden escribir de la forma (a-1)×n + a.

Calculando la suma, sabiendo que las filas a van de 1 a n:

De nuevo la constante mágica. Más aún, cualquier serie de seis valores en los que no haya dos de la misma fila o columna sumará la constante mágica. Escribiendo el término i, j de la matriz como (i-1)×n + j, y tomando 6 términos cualesquiera con la condición de que ni i, ni j se repitan y varíen de 1 hasta n, la ecuación resultante será exactamente la misma que en el caso anterior y la suma, por tanto, la constante mágica.

Como se puede demostrar, la cantidad de series posibles de n números que cumplan la condición anterior es n !, 720 en cuadrados de orden 6, y ni siquiera son todas las posibles, ya que antes habíamos obtenido seis que no están incluidas entre ellas.

De orden 3 existe un único cuadrado mágico (las distintas variaciones se pueden obtener por rotación o reflexión), en 1693 Bernard Frenicle de Bessy estableció que hay 880 clases de cuadrados mágicos de orden 4. [2] Posteriormente se ha encontrado que existen 275.305.224 cuadrados mágicos de orden 5; el número de cuadrados de mayor orden se desconoce aún pero según estimaciones de Klaus Pinn y C. Wieczerkowski realizadas en 1998 mediante los métodos de Montecarlo y de mecánica estadística existen (1,7745 ± 0,0016) × 1019 cuadrados de orden 6 y (3,7982 ± 0,0004) × 1034 cuadrados de orden 7.

Por lo que respecta a órdenes inferiores, es evidente que de orden uno existe un único cuadrado mágico,   1  , mientras que de orden 2 no existe ninguno, lo que se puede demostrar considerando el cuadrado mágico a, b, c, d de la figura; para que tal disposición fuera un cuadrado mágico deberían cumplirse las siguientes ecuaciones (siendo M la constante mágica o cualquier cantidad, si se quiere):

a b
c d
a + b = M
a + c = M
a + d = M
b + c = M
b + d = M
c + d = M

escribiendo el sistema de ecuaciones en forma matricial y buscando el orden de la matriz de coeficientes, se obtiene que es tres, mientras que el número de incógnitas es cuatro, de modo que el sistema solo tiene la solución trivial a = b = c = d = M/2 siendo imposible construir un cuadrado mágico en el que las cuatros cifras sean distintas.


Resumiendo: la cantidad de diferentes n×n cuadrados mágicos para n entre 1 y 5, sin contar rotaciones y reflexiones, son:

1, 0, 1, 880, 275305224 (sucesión A006052 en OEIS).

Para s = 6 se ha estimado que hay aproximadamente 1.7745×1019.

Magic square Lo Shu.png

The Astronomical Phenomena (Tien Yuan Fa Wei).
Compilado por Bao Yunlong en el siglo XIII,
edición de la Dinastía Ming, 1457-1463.

Biblioteca del Congreso de los EE.UU.
Other Languages
العربية: مربع سحري
বাংলা: জাদু বর্গ
brezhoneg: Karrez hud
English: Magic square
Esperanto: Magia kvadrato
עברית: ריבוע קסם
हिन्दी: माया वर्ग
italiano: Quadrato magico
日本語: 魔方陣
한국어: 마방진
Bahasa Melayu: Segi empat sama ajaib
Nederlands: Magisch vierkant
norsk nynorsk: Magisk kvadrat
norsk bokmål: Magisk kvadrat
ਪੰਜਾਬੀ: ਜਾਦੂਈ ਵਰਗ
Piemontèis: Quadrà màgich
português: Quadrado mágico
română: Pătrat magic
srpskohrvatski / српскохрватски: Magični kvadrat
slovenčina: Magický štvorec
slovenščina: Magični kvadrat
српски / srpski: Magični kvadrati
Türkçe: Sihirli kare
українська: Магічний квадрат
oʻzbekcha/ўзбекча: Sehrli kvadrat
Tiếng Việt: Ma trận kì ảo
中文: 幻方