Convexidad

Definición de convexidad.

La convexidad (del latín convexĭtas, -ātis) de una curva o una superficie, es la zona que se asemeja al exterior de una circunferencia o una superficie esférica, es decir, que tiene su parte sobresaliente dirigida al observador. Es el concepto opuesto a la ' concavidad'.

Una parte C de un espacio vectorial real es convexa si para cada par de puntos de C, el segmento que los une está totalmente incluido en C; es decir, un conjunto es convexo si se puede ir de cualquier punto a cualquier otro en línea recta, sin salir del mismo.

Definición formal: C es convexo si y solo si para todo :

Es decir, :

Nótese que en esta fórmula, la suma de los coeficientes y es , por lo tanto el punto así definido no depende del origen del sistema de coordenadas.

En un conjunto no convexo cada segmento que muestra la no convexidad tiene forzosamente que atravesar por lo menos dos veces (en E´y F´) el borde o la frontera del conjunto , , definida como

donde es definido como el interior de . Por tanto la convexidad depende esencialmente de la forma del borde del conjunto, y la definición equivale a

donde denota el producto escalar usual en entre y . Intuitivamente, esto dice que, por cada punto en el borde del conjunto (ósea, cada punto ) existe un vector que divide el plano entero, y que cada punto existe solamente en el hiperplano con ángulo que subtiende a ese vector trasladado por .

Convexidad por tangentes.

En el caso de una frontera diferenciable (sin puntos angulosos) se pueden considerar sus tangentes (ya que existe un único vector normal a la superficie), y resulta bastante intuitivo que los convexos se caracterizan por hallarse enteramente del mismo lado de cada tangente; es decir que las tangentes nunca atraviesan C (como en el punto A de la figura). Esta propiedad sigue cierta en presencia de puntos angulosos, como en el caso de los polígonos convexos.

Se establece la equivalencia de estas dos caracterizaciones considerando que una tangente (en A por ejemplo) es la posición límite de las cuerdas [AA'] con A' acercándose indefinidamente de A, en el borde de C. El segmento [AA´] está en C mientras que el esto de la recta (AA') está fuera (por el absurdo: si se encuentra un punto B de C en la recta (AA´), fuera de [AA'], entonces el segmento [AB], exterior a C, contradice su convexidad).

Envoltura convexa de un conjunto

Envolturas convexas de dos conjuntos.

Se llama envolvente convexa de un conjunto dado C al menor (por inclusión) conjunto convexo que contiene a C (es fácil ver que siempre existe). En la figura, la envoltura convexa de la forma azul oscuro es todo el dominio azul (es decir la unión del conjunto original azul oscuro con el dominio azul claro), y la envoltura convexa de los cinco puntos verde oscuro es el polígono verde claro (incluyendo los puntos, por supuesto). En particular, se define

y, como previamente dicho, se nota que, si , y es un conjunto convexo, entonces .

Se establece con facilidad que la envoltura convexa es el conjunto de todos los baricentros positivos (es decir con coeficientes todos positivos) de los puntos del conjunto inicial.

En la figura, C es un baricentro positivo de A y B porque está en el segmento [AB], y G es otro tanto de D,E y F, porque se encuentra en el triángulo DEF.

Other Languages
العربية: مجموعة محدبة
Deutsch: Konvexe Menge
Ελληνικά: Κυρτό σύνολο
English: Convex set
Esperanto: Konveksa aro
eesti: Kumer hulk
français: Ensemble convexe
日本語: 凸集合
қазақша: Дөңес жиын
한국어: 볼록 집합
norsk nynorsk: Konveks mengd
Piemontèis: Bombadura
português: Conjunto convexo
Simple English: Convex set
slovenčina: Konvexná množina
slovenščina: Konveksna množica
svenska: Konvex mängd
українська: Опукла множина
Tiếng Việt: Tập lồi
中文: 凸集