Controlador PID

Diagrama de bloques de un controlador PID en un lazo realimentado.

Un controlador PID es un mecanismo de control por realimentación ampliamente usado en sistemas de control industrial. Este calcula la desviación o error entre un valor medido y un valor deseado.

El algoritmo del control PID consiste de tres parámetros distintos: el proporcional, el integral, y el derivativo. El valor Proporcional depende del error actual. El Integral depende de los errores pasados y el Derivativo es una predicción de los errores futuros. La suma de estas tres acciones es usada para ajustar al proceso por medio de un elemento de control como la posición de una válvula de control o la potencia suministrada a un calentador.

Cuando no se tiene conocimiento del proceso, históricamente se ha considerado que el controlador PID es el controlador más adecuado. Ajustando estas tres variables en el algoritmo de control del PID, el controlador puede proveer una acción de control diseñado para los requerimientos del proceso en específico. La respuesta del controlador puede describirse en términos de la respuesta del control ante un error, el grado el cual el controlador sobrepasa el punto de ajuste, y el grado de oscilación del sistema. Nótese que el uso del PID para control no garantiza control óptimo del sistema o la estabilidad del mismo.

Algunas aplicaciones pueden solo requerir de uno o dos modos de los que provee este sistema de control. Un controlador PID puede ser llamado también PI, PD, P o I en la ausencia de las acciones de control respectivas. Los controladores PI son particularmente comunes, ya que la acción derivativa es muy sensible al ruido, y la ausencia del proceso integral puede evitar que se alcance al valor deseado debido a la acción de control.

Historia y aplicaciones

Los primeros controladores PID empezaron con el diseño de los limitadores de velocidad. Posteriormente los controladores PID fueron usados para la dirección automática de barcos. Uno de los ejemplos más antiguos de un controlador PID fue desarrollado por Elmer Sperry en 1911, mientras que el primer análisis teórico de un controlador PID fue publicado por el ingeniero ruso americano Nicolas Minorsky en 1922. Minorsky estaba diseñando sistemas de dirección automática para la Armada de los Estados Unidos, y basó sus análisis observando al timonel, notando así que el timonel controlaba la nave no solo por el error actual, sino también en los errores pasados así como en la tasa actual de cambio, logrando así que Minorsky desarrollara un modelo matemático para esto. Su objetivo era lograr estabilidad, y no control general, lo cual simplificó el problema significativamente. Mientras que el control proporcional brinda estabilidad frente a pequeñas perturbaciones, era insuficiente para tratar perturbaciones constantes, como un vendaval fuerte el cual requería un término integral. Finalmente, el término derivativo se agregó para mejorar el control.

Se realizaron pruebas del controlador en el USS New Mexico (BB-40), donde este se encargaba de controlar la velocidad angular del timón. El control PI se mantuvo virando con un error de ±2°. Al agregar el elemento D se logró un error del ±1/6°, mucho mejor que lo que un timonel podría lograr.

Finalmente, Debido a la resistencia del personal, la Armada no adoptó este sistema. Trabajos similares se llevaron a cabo y se publicaron en la década de 1930.

Por tener una exactitud mayor a los controladores proporcional, proporcional derivativo y proporcional integral se utiliza en aplicaciones más cruciales tales como control de presión, flujo, fuerza, velocidad, en muchas aplicaciones química, y otras variables. Además es utilizado en reguladores de velocidad de automóviles (control de crucero o cruise control), control de ozono residual en tanques de contacto.

Un ejemplo muy sencillo que ilustra la funcionalidad básica de un PID es cuando una persona entra a una ducha. Inicialmente abre la llave de agua caliente para aumentar la temperatura hasta un valor aceptable (también llamado "Setpoint"). El problema es que puede llegar el momento en que la temperatura del agua sobrepase este valor así que la persona tiene que abrir un poco la llave de agua fría para contrarrestar el calor y mantener el balance. El agua fría es ajustada hasta llegar a la temperatura deseada. En este caso, el humano es el que está ejerciendo el control sobre el lazo de control, y es el que toma las decisiones de abrir o cerrar alguna de las llaves; pero no sería ideal si en lugar de nosotros, fuera una máquina la que tomara las decisiones y mantuviera la temperatura que deseamos?

Esta es la razón por la cual los lazos PID fueron inventados. Para simplificar las labores de los operadores y ejercer un mejor control sobre las operaciones. Algunas de las aplicaciones más comunes son:

  • Lazos de temperatura (aire acondicionado, calentadores, refrigeradores, etc.)
  • Lazos de nivel (nivel en tanques de líquidos como agua, lácteos, mezclas, crudo, etc.)
  • Lazos de presión (para mantener una presión predeterminada en tanques, tubos, recipientes, etc.)
  • Lazos de caudal (mantienen el caudal dentro de una línea o cañería)[1]
Other Languages