Constante de Planck

Valores de h Unidades
6.62606957(29) ×10 -34 J× s
4.13566733(10) × 10 -15 eV× s
6.62606896(33) × 10 -27 ergio× s
Valores de ħ Unidades
1.054571628(53) × 10 -34 J× s
6.58211899(16) × 10 -16 eV× s
Valores de h y de ħ en diferentes unidades
Placa en la Universidad Humboldt de Berlín que reza: "En este edificio enseñó MAX PLANCK, el descubridor del cuanto de acción h, de 1889 a 1928"

La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Planck, uno de los padres de dicha teoría. Denotada como , es la constante que frecuentemente se define como el cuanto elemental de acción. Planck la denominaría precisamente «cuanto de acción» (en alemán, Wirkungsquantum), debido a que la cantidad denominada acción de un proceso físico (el producto de la energía implicada y el tiempo empleado) solo podía tomar valores discretos, es decir, múltiplos enteros de .

Fue inicialmente propuesta como la constante de proporcionalidad entre la energía de un fotón y la frecuencia de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck»:

Dado que la frecuencia , la longitud de onda , y la velocidad de la luz cumplen , la relación de Planck se puede expresar como:

Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal de una partícula con la longitud de onda de De Broglie λ de la misma:

En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor 1/2π dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ ("h barra"):

De esta forma la energía de un fotón con frecuencia angular , donde , se podrá expresar como:

Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica. Los valores que puede tomar el momento angular orbital, de spin o total, son múltiplos enteros o semienteros de la constante reducida. Así, si es el momento angular total de un sistema con invariancia rotacional y es el momento angular del sistema medido sobre una dirección cualquiera, por ejemplo la del eje z, estas cantidades sólo pueden tomar los valores:

.

Unicode reserva los códigos U+210E (h) para la constante de Planck y U+210F (h con barra) para la constante de Dirac.

Origen de la constante

Historia

El camino que llevó a Max Planck a su constante tuvo su origen en un proyecto que comenzó con un cuarto de siglo de anterioridad, la teoría sobre «la ley de distribución de energía del espectro normal».[1] En él estudiaba la radiación térmica emitida por un cuerpo debido a su temperatura. En esta teoría se introdujo en 1862 el concepto de cuerpo negro, cuya superficie absorbe toda la radiación térmica que incide sobre él y que además emite la radiación térmica con el mismo espectro a la misma temperatura.

Sin embargo, un estudio experimental del cuerpo negro condujo a una discrepancia entre los resultados experimentales y los obtenidos aplicando las leyes de la Física clásica. Según la ley de Stefan-Boltzmann, la radiancia espectral de los cuerpos aumenta rápidamente con la cuarta potencia de la temperatura y, además, se desplaza hacia frecuencias mayores ( ley de desplazamiento de Wien). El problema surgió al calcular la energía absorbida por el cuerpo negro a una temperatura dada mediante el teorema de la equipartición de energía, pues a medida que la frecuencia crecía la predicción teórica tendía a infinito mientras que los experimentos mostraban que la densidad de energía siempre es finita y tiende a cero para frecuencias muy altas. Este comportamiento irreal de las teorías clásicas a las altas frecuencias es conocido como « catástrofe ultravioleta». Planck estaba interesado en dar sentido a este dilema; para lograrlo, decidió considerar la energía absorbida y emitida por el cuerpo negro en forma de «paquetes» discretos. Al realizar los cálculos de acuerdo con este procedimiento, y mediante un trabajo numérico, obtuvo una buena concordancia entre los resultados experimentales y los teóricos, introduciendo una constante que posteriormente fue conocida como la constante de Planck (h).

El trabajo de Planck supuso el comienzo de la mecánica cuántica(MC), lo que llevó consigo un cambio de mentalidad en la manera de comprender los fenómenos de la naturaleza a escala atómica.[3] El siguiente paso vino de la mano de Albert Einstein que, de manera análoga a Planck, planteó la absorción de luz por un metal de forma discreta, a cuantos, y su correspondiente emisión de electrones, en el efecto fotoeléctrico. Otro paso dado a comienzos del siglo XX fue el obtenido con el modelo del átomo de Bohr y sus postulados, revolucionando el concepto del átomo; en él interviene este nuevo concepto de la emisión y absorción de la luz por la materia de manera discreta. Por último, también hay una relación de la teoría de Planck y su constante con el principio de indeterminación de Heisenberg.

Orden de magnitud de la constante

Cuando se expresa el valor de la constante de Planck en unidades del SI, el valor resultante es muy pequeño, aproximadamente 6.63 x 10-34 J.s, lo cual indica que no parece aplicable a una escala adaptada a humanos (donde los valores habituales son metros, kg o segundos). La constante de Planck se aplica en física cuando se trabaja a escala atómica; por ejemplo, a la hora de calcular la energía de un fotón del espectro visible en el verde con una frecuencia de 5.77 x 1014 Hz. cada fotón de esta frecuencia tiene una energía de h.f = 3.82x 10 -19 J. Para aplicar la constante de Planck a nivel macroscópico habría que hacerlo con cantidades de fotones propias de nuestra escala. En este caso se puede comparar, por ejemplo, con un mol de fotones (NA = 6.02x1023 molec/mol). Si aplicamos la constante de Planck no a un fotón sino a una cantidad hipotética de un mol de fotones, la energía resultante es del orden de 230 kJ/mol, que ya es una medida típica en la vida cotidiana, lo cual hace patente las diferentes escalas en las que se puede valorar la naturaleza: la atómica (del orden de, por ejemplo, la constante de Planck), la humana (aplicando las unidades básicas del SI), o la del universo (del orden de, por ejemplo, la velocidad de la luz que permite medir distancias en años luz).

Other Languages
العربية: ثابت بلانك
azərbaycanca: Plank sabiti
беларуская: Пастаянная Планка
Bahasa Indonesia: Konstanta Planck
한국어: 플랑크 상수
lietuvių: Planko konstanta
latviešu: Planka konstante
Bahasa Melayu: Pemalar Planck
مازِرونی: پلانک ثابت
norsk nynorsk: Planckkonstanten
norsk bokmål: Plancks konstant
Piemontèis: Costanta ëd Planck
پنجابی: پلانک نمبر
srpskohrvatski / српскохрватски: Planckova konstanta
Simple English: Planck constant
slovenščina: Planckova konstanta
Türkçe: Planck sabiti
татарча/tatarça: Планк даими зурлыгы
українська: Стала Планка
Tiếng Việt: Hằng số Planck
Bân-lâm-gú: Planck siông-sò͘