Conjunto infinito

En teoría de conjuntos, un conjunto infinito es un conjunto que no es finito. Algunos ejemplos son:

Definición de Propiedades

Un conjunto finito A es aquel que tiene un número finito de elementos, o de otro modo, que puede ponerse en correspondencia biunívoca con un conjunto del tipo {1, 2, 3, ..., n}, donde n es un número natural. Esto significa que podemos emparejar los elementos de A y los de {1, 2, 3, ..., n} sin que sobre ninguno. Si un conjunto verifica esto entonces es infinito:

Un conjunto infinito es un conjunto que no puede ponerse en correspondencia biunívoca con ningún conjunto {1, 2, 3, ..., n} para ningún número natural n.

Los conjuntos infinitos poseen las siguientes propiedades:

  • La unión de dos conjuntos es infinita siempre que al menos uno de ellos sea infinito.
  • Cualquier conjunto que contenga un conjunto infinito es infinito a su vez.
  • El conjunto potencia de un conjunto infinito es infinito a su vez.

Aunque ningún número natural se corresponde con el número de elementos de un conjunto infinito, se pueden «contar» la cantidad de dichos elementos usando números transfinitos. Puede entenderse entonces que los conjuntos infinitos «más pequeños» son los conjuntos numerables, como el conjunto de los números naturales.

Definición alternativa

El número de elementos de un conjunto finito es un número natural, y cualquiera de sus subconjuntos es también finito y tiene menos elementos. Un conjunto infinito sin embargo puede tener el mismo tamaño que una parte de sí mismo. Por ejemplo, el conjunto de los números naturales y el conjunto de los números pares tienen el «mismo número de elementos», ya que sus elementos pueden emparejarse perfectamente:

1, 2, 3, 4, ...
2, 4, 6, 8, ...

y sin embargo los números pares son un subconjunto de los números naturales, {2, 4, 6, ...} ⊆ {1, 2, 3, ...}. Existe una definición alternativa de conjunto infinito basada en esta propiedad característica:

Un conjunto infinito A es un conjunto que tiene un subconjunto propio (uno que no es el mismo A) con el que puede ponerse en correspondencia biunívoca.

Other Languages