Conexión de Levi-Civita

En geometría de Riemann, la conexión de Levi-Civita (nombrada así por Tullio Levi-Civita) es la conexión libre de torsión del fibrado tangente, preservando una métrica de Riemann (o métrica pseudoriemanniana) dada. El teorema fundamental de la geometría de Riemann establece que hay una conexión única que satisfacen estas propiedades.

En la teoría de una variedad de Riemann o de una variedad pseudoriemanniana el término derivada covariante se utiliza a menudo para la conexión de Levi-Civita. La expresión en coordenadas espaciales de la conexión se llama los símbolos de Christoffel.

Definición formal

Sea (M, g) una variedad de Riemann (o una variedad pseudoriemanniana) entonces una conexión afín es una conexión de Levi-Civita si satisface las condiciones siguientes

  • Preserva la métrica, es decir, para cualesquiera campos vectoriales X, Y, Z tenemos , donde X g(Y, Z) denota la derivada de la función g(Y, Z) a lo largo del campo vectorial X.
  • Es libre de torsión, es decir, para cualesquiera campos vectoriales X y Y tenemos , donde es el corchete de Lie de los campos vectoriales X y Y.
Other Languages