Condensado de Bose-Einstein

Distribución de momentos que confirma la existencia de un nuevo estado de agregación de la materia, el condensado de Bose-Einstein. Datos obtenidos en un gas de átomos de rubidio, la coloración indica la cantidad de átomos a cada velocidad, con el rojo indicando la menor y el blanco indicando (la mayor). Las áreas blancas y celestes indican las menores velocidades. A la izquierda se observa el diagrama inmediato anterior al condensado de Bose-Einstein y al centro el inmediato posterior. A la derecha se observa el diagrama luego de cierta evaporación, con la sustancia cercana a un condensado de Bose-Einstein puro. El pico no es infinitamente angosto debido al relación de indeterminación de Heisenberg: dado que los átomos están confinados en una región del espacio, su distribución de velocidades posee necesariamente un cierto ancho mínimo. La distribución de la izquierda es para T > Tc (sobre 400 nanokelvins (nK)), la central para T < Tc (sobre 200 nK) y la de la derecha para T << Tc (sobre 50 nK)


En física, el condensado de Bose-Einstein es el estado de agregación de la materia que se da en ciertos materiales a temperaturas cercanas al cero absoluto.[1] La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental. El condensado es una propiedad cuántica que no tiene análogo clásico. Debido al principio de exclusión de Pauli, sólo las partículas bosónicas pueden tener este estado de agregación: si las partículas que se han enfriado son fermiones, lo que se encuentra es un líquido de Fermi.

Primeros desarrollos

En la década de 1920, Satyendra Nath Bose y Albert Einstein publican conjuntamente un artículo científico acerca de los fotones de luz y sus propiedades. Bose describe ciertas reglas para determinar si dos fotones deberían considerarse idénticos o diferentes. Esta se llama la estadística de Bose (o a veces la estadística de Bose-Einstein). Einstein aplica estas reglas a los átomos preguntándose cómo se comportarían los átomos de un gas si se les aplicasen estas reglas. Así descubre los efectos que vienen del hecho de que a muy bajas temperaturas la mayoría de los átomos están al mismo estado cuántico, que sería el menos energético posible.

Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo. Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental.

La agrupación de partículas en ese nivel inferior se le llama Condensado de Bose-Einstein (BEC), porque la demostración está hecha de acuerdo con las ecuaciones de Einstein. Lo que seguramente no pudo imaginar es lo extraño que se vería una masa de materia con todos sus átomos en un solo nivel. Esto significa que todos los átomos son absolutamente iguales. No hay medida que pueda diferenciar uno de otro. Se trata de un estado de coherencia cuántica microscópico.

Other Languages
Bahasa Indonesia: Kondensat Bose-Einstein
norsk nynorsk: Bose-Einsteinkondensat