Circunferencia de los nueve puntos

Circulo nueve puntos.svg

En geometría, se conoce como circunferencia de los nueve puntos a aquella que se puede construir con puntos vinculados a cualquier triángulo propuesto. Su nombre deriva del hecho que la circunferencia pasa por nueve puntos notables, seis de ellos sobre el mismo triángulo (salvo que el triángulo sea obtusángulo). Estos son:

  • los puntos medios de los tres lados del triángulo,
  • los pies de las alturas de tal triángulo,
  • los puntos medios de los segmentos que unen los tres vértices con el ortocentro del triángulo.

Historia

Generalmente, se adjudica al alemán Karl Wilhelm Feuerbach el descubrimiento de la circunferencia de los nueve puntos; sin embargo, lo que él descubrió fue la circunferencia de los seis puntos, reconociendo que sobre ella se encontraban los puntos medios de los lados de un triángulo y los pies de las alturas (en la figura, los puntos: M N P y E G J).

Anteriormente, Charles Brianchon y Jean-Victor Poncelet habían demostrado el mismo teorema. Poco tiempo después de Feuerbach, el matemático Olry Terquem también demostró la existencia del círculo y reconoció además que los puntos medios de los segmentos determinados por los vértices del triángulo y el ortocentro, también estaban contenidos en la circunferencia (en la figura, los puntos: D, F, H).

Onomástica

Poncelet la llamó circunferencia de los nueve puntos, denominación generalmente usada en los países de habla inglesa. Algunos geómetras franceses la llaman círculo de Euler ( o circunferencia de Euler) y los geómetras teutones la denominan circunferencia de Feuerbach, y en México, circunferencia de los nueve puntos (sic).[3]

Other Languages