Choque inelástico

Fotografía de alta exposición de una pelota que rebota tomada con una luz estroboscópica a 25 imágenes por segundo. El hecho de que la altura alcanzada en los rebotes sea cada vez menor se debe principalmente a que el choque entre la pelota y el suelo es inelástico.

Un choque inelástico es un tipo de choque en el que la energía cinética no se conserva. Como consecuencia, los cuerpos que colisionan pueden sufrir deformaciones y aumento de su temperatura. En el caso ideal de un choque perfectamente inelástico entre objetos macroscópicos, estos permanecen unidos entre sí tras la colisión. El marco de referencia del centro de masas permite presentar una definición más precisa.

En un choque inelástico las fuerzas internas hacen trabajo, por lo que la energía cinética del sistema ya no permanece constante, aunque el momento lineal sigue conservándose. Si el trabajo de las fuerzas internas es negativo, la energía cinética del sistema disminuirá durante la colisión.

La principal característica de este tipo de choque es que existe una disipación de energía, ya que tanto el trabajo realizado durante la deformación de los cuerpos como el aumento de su energía interna se obtiene a costa de la energía cinética de los mismos antes del choque. En cualquier caso, aunque no se conserve la energía cinética, sí se conserva el momento lineal total del sistema.

En esta página, se describen los choques frontales de dos partículas en el Sistema de Referencia del Laboratorio (Sistema -L) y en el Sistema de Referencia del Centro de Masa (Sistema–C).

Como caso particular, se comprueba la conservación del momento lineal en la explosión de un cuerpo, que da lugar a dos fragmentos que se mueven en la misma dirección pero en sentido contrario.

Choques frontales inelásticos en una dimensión

Esta sección analiza el caso de dos partículas que colisionan y después se separan siguiendo la misma dirección pero con sentidos opuestos. Para este sistema se puede hacer una descripción sencilla si se usa como sistema de referencia el sistema de referencia "laboratorio", que se considera un sistema inercial. en este sistema la conservación del momento lineal lleva a:

donde:

, velocidades iniciales (antes del choque)
, velocidad después del choque.

A continuación se introduce el coeficiente de restitución definido por:

Despejando las velocidades después del choque v1 y v2 se tiene:

Si el choque es perfectamente inelástico (después del choque los cuerpos quedan completamente pegados; o sea, forman un solo bloque), el coeficiente e = 0, entonces:

De donde se observa que las dos velocidades se convierten en una sola, como era de esperar, pues la velocidad final después del choque es la velocidad del conjunto de los dos cuerpos que quedan unidos.

Teniendo en cuenta que la velocidad del centro de masas es

Podemos escribir las expresiones de la velocidad de las partículas después del choque v1 y v2 de forma más simplificada y fácil de recordar.

v1=(1+e)V(cm)-eu1

v2=(1+e)V(cm)-eu2

Si la segunda partícula está en reposo antes del choque, u2=0. Las velocidades después del choque v1 y v2 serán.

Descripción desde un Sistema de Referencia fijo al Centro de Masa

Velocidad de las partículas respecto del Sistema-C antes del choque

Velocidad de las partículas respecto del Sistema-C después del choque

v1(cm)=-e·u1(cm) v2(cm)=-e·u2(cm)

La velocidad de ambos objetos después del choque en el Sistema-C se reducen en un factor e.

Comprobamos también que se cumple el principio de conservación del momento lineal en el Sistema-C

m1·u1(cm)+m2·u2(cm)=0

m1·v1(cm)+m2·v2(cm)=0