Cálculo fraccional

En matemáticas, el cálculo fraccional es una rama del análisis matemático que estudia la posibilidad de tomar potencias reales del operador diferencial

y el operador integral J. (Usualmente no I, para evitar confusión con otros I-como glifos, o identidades; pero J no debe ser confundida con las funciones de Bessel, las que surgen frecuentemente en el estudio de las ecuaciones diferenciales.)

En este contexto potencias se refieren a la aplicación iterativa, en el mismo sentido que f2(x) = f(f(x)).
Por ejemplo, uno podría presentar la pregunta de interpretar con algún sentido

como una raíz cuadrada del operador diferencial (un operador medio iterado), es decir, una expresión para algún operador que al ser aplicada dos veces a una función tendrá el mismo efecto que la diferenciación. Más generalmente, uno puede mirar la cuestión de definir

para valores reales de s de manera tal que cuando s toma como valor un número natural n, la potencia usual de la n-diferenciación se recupera para n > 0, y la −n potencia de J cuando n < 0.

Hay varias razones para considerar esta pregunta. Una de ellas es que de esta forma el semigrupo de potencias Dn en la variable discreta n son vistas dentro de un semigrupo continuo (eso se espera) de parámetro s, el cual es un número real. Los semigrupos continuos prevalecen en matemáticas, y tienen una teoría interesante. Nótese aquí que fracción es entonces una mala denominación para el exponente, ya que no necesita ser un número racional, pero el término cálculo fraccional se ha vuelto tradicional.

Derivada fraccional

Respecto de la existencia de tal teoría, los fundamentos de esta materia fueron sentados por Liouville en una obra de 1832. La derivada fraccional de una función al orden a es ahora frecuentemente definida por medio de las transformadas integrales de Fourier o la Mellin. Un punto importante es que la derivada fraccional en un punto x es una propiedad local solamente cuando a es un natural; en casos no integrales no podemos decir que la derivada fraccional en x de una función f depende solamente del gráfico de f muy cerca de x, de la forma en que las derivadas que son potencias de integrales ciertamente lo hacen. Entonces, se espera que la teoría incluya algún tipo de condiciones de frontera, incluyendo información sobre la función más lejos. Para usar una metáfora, la derivada fraccional requiere algo de visión periférica.

Acerca de la historia del tema, se puede consultar la tesis (en francés): Stéphane Dugowson, Les différentielles métaphysiques (histoire et philosophie de la généralisation de l'ordre de dérivation), Thèse, Université Paris Nord (1994)

Other Languages