Biomecánica

La biomecánica es un área de conocimiento interdisciplinaria que estudia los fenómenos cinemáticos y mecánicos que presentan los seres vivos considerados como sistemas complejos formados por tejidos, sólidos y cuerpos mecánicos. Así la biomecánica se interesa por el movimiento, equilibrio, la física, la resistencia, los mecanismos lesionales que pueden producirse en el cuerpo humano como consecuencia de diversas acciones físicas.

Es una disciplina científica que tiene por objeto el estudio de las estructuras de carácter mecánico que existen en los seres vivos, fundamentalmente del cuerpo humano. Esta área de conocimiento se apoya en diversas ciencias biomédicas, utilizando los conocimientos de la mecánica, la ingeniería, la anatomía, la fisiología y otras disciplinas, para estudiar el comportamiento del cuerpo humano y resolver los problemas derivados de las diversas condiciones a las que puede verse sometido.[1]

La biomecánica está íntimamente ligada a la biónica y usa algunos de sus principios, ha tenido un gran desarrollo en relación con las aplicaciones de la ingeniería a la medicina, la bioquímica y el medio ambiente, tanto a través de modelos matemáticos para el conocimiento de los sistemas biológicos como en lo que respecta a la realización de partes u órganos del cuerpo humano y también en la utilización de nuevos métodos diagnósticos.

Una gran variedad de aplicaciones incorporadas a la práctica médica; desde la clásica pata de palo, a las sofisticadas ortopedias con mando mioeléctrico y de las válvulas cardíacas a los modernos marcapasos existe toda una tradición e implantación de prótesis.

Hoy en día es posible aplicar con éxito, en los procesos que intervienen en la regulación de los sistemas modelos matemáticos que permiten simular fenómenos muy complejos en potentes ordenadores, con el control de un gran número de parámetros o con la repetición de su comportamiento.

Historia y desarrollo

La biomecánica se estableció como disciplina reconocida y como área de investigación autónoma en la segunda mitad del siglo XX en gran parte gracias a los trabajos de Y. C. Fung cuyas investigaciones a lo largo de cuatro décadas marcaron en gran parte los temas de interés en cada momento de esta disciplina.[2]

Circulación sanguínea

Históricamente uno de los primeros problemas abordados por el enfoque biomecánico moderno, resultó de intento de aplicar las ecuaciones de Navier-Stokes a la comprensión del riego sanguíneo.[3] Aunque usualmente se considera a la sangre como un fluido newtoniano incompresible, esta modelización falla cuando se considera el flujo sanguíneo en las arteriolas o capilares. A la escala de esas conducciones, los efectos del tamaño finito de las células sanguíneas o eritrocitos individuales son significativos, y la sangre no puede ser modelada como un medio continuo. Más concretamente, cuando el diámetro del vaso sanguíneo es ligeramente mayor que el diámetro del erotrocito, entonces aparece el efecto Fahraeus–Lindquist y existe una disminución en la tensión tangente al vaso. Así a medida que el diámetro del vaso sanguíneo disminuye, los glóbulos rojos tienen que aplastarse a lo largo del vaso y frecuentemente sólo pueden pasar de uno en uno. En este caso, se da un efecto Fahraeus–Lindquist inverso y la tensión tangencial del vaso se incrementa.

Huesos

Otro desarrollo importante de la biomecánica fue la búsqueda de ecuaciones constitutivas que modelaran adecuadamente las propiedades mecánicas de los huesos.

Mecánicamente los huesos son estructuras mecánicas anisótropas, más exactamente tienen propiedades diferentes en las direcciones longitudinales y transversales. Aunque sí son transversalmente isótropos, no son globalmente isótropos. Las relaciones de tensión-deformación en los huesos pueden ser modelizadas usando una generalización de la ley de Hooke, para materiales ortotrópicos:

Donde , existiendo sólo cinco constantes independientes que son función de:

, los módulos de Young en dirección longitudinal y transversal.
, los dos coeficientes de Poisson.
, el módulo de elasticidad transversal.

Tejido muscular

Existen tres tipos de músculo:

  • Músculo liso (no estriado): El estómago, el sistema vascular, y la mayor parte del tracto digestivo están formados por músculo liso. Este tipo de músculo se mueve involuntariamente.
  • Músculo miocardíaco (estriado): Los cardiomiocitos son un tipo altamente especializado de célula. Estas células se contraen involuntariamente y están situadas en la pared del corazón, actúan conjuntamente para producir latido sincronizados.
  • Músculo esquelético (estriado): Es un músculo que desarrolla un esfuerzo sostenido y generalmente voluntario. Un modelo ampliamente usado para este tipo de músculo, es la ecuación de Hill que puede simular adecudamente el tétanos:

Donde:

, es la tensión o cargas del músculo.
, la velocidad de contracción.
, es la máxima carga o tensión que se puede producir en el músculo.
, son dos constantes que caracterizan el músculo.

Esta ecuación puede describirse en términos de la tensión y la velocidad de deformación como:

Tejidos blandos

Durante la década de 1970, varios investigadores que trabajaban en biomecánica iniciaron un programa de caracterización de las propiedades mecánicas de los tejidos blandos, buscando ecuaciones constitutivas fenomenológicas para su comportamiento mecánico.

Los primeros trabajos se concentraron en tejidos blandos como los tendones, los ligamentos y el cartílago son combinaciones de una matriz de proteínas y un fluido. En cada uno de estos tejidos el principal elemento importante es el colágeno, aunque la cantidad y la calidad del colágeno varía de acuerdo con la función que cada tejido realiza:

  • La función de los tendones es conectar el músculo con el hueso y está sujeto a cargas de tracción. Los tendones deben ser fuertes para facilitar el movimiento del cuerpo, pero al mismo tiempo ser flexibles para prevenir el daño a los tejidos musculares.
  • Los ligamentos conectan los huesos entre sí, y por tanto son más rígidos que los tendones.
  • El cartílago, por otro lado, está solicitado primariamente con compresión y actúa como almohadillado en las articulaciones para distribuir las cargas entre los huesos. La capacidad resistente del cartílago en compresión se deriva principalmente del colágeno, como en tendones y ligamentos, aunque en este tejido el colágeno tiene una configuración anudada, soportada por uniones de cruce de glucosaminoglicanos que también permiten alojar agua para crear un tejido prácticamente incompresible capaz de soportar esfuerzos de compresión adecudadamente.

Más recientemente, se han desarrollado modelos biomecánicos para otros tejidos blandos como la piel y los órganos internos. Este interés ha sido promovido por la necesidad de realismo en la simulaciones de interés médico.

Other Languages
žemaitėška: Biuomekanėka
беларуская: Біямеханіка
български: Биомеханика
català: Biomecànica
Deutsch: Biomechanik
English: Biomechanics
Esperanto: Biomekaniko
فارسی: بیومکانیک
français: Biomécanique
עברית: ביומכניקה
italiano: Biomeccanica
қазақша: Биомеханика
한국어: 생물역학
lietuvių: Biomechanika
македонски: Биомеханика
Nederlands: Biomechanica
occitan: Biomecanica
polski: Biomechanika
português: Biomecânica
română: Biomecanică
русский: Биомеханика
srpskohrvatski / српскохрватски: Biomehanika
српски / srpski: Биомеханика
svenska: Biomekanik
Tagalog: Biyomekanika
Türkçe: Biyomekanik
українська: Біомеханіка
oʻzbekcha/ўзбекча: Biomexanika
Tiếng Việt: Cơ sinh học
中文: 生物力学