Biobutanol

El butanol puede ser utilizado como combustible en un motor de combustión interna. La gran longitud de su cadena hidrocarbonada provoca que su no polaridad sea mayor.[2] y también de combustibles fósiles (como petrobutanol), pero estos dos tienen las mismas propiedades químicas.

Producción del biobutanol

Al butanol que se obtiene a partir de biomasa se le denomina biobutanol.[4]

Tecnologías

El biobutanol puede ser producido por medio de la fermentación de biomasa con el proceso A.B.E. Este proceso utiliza la bacteria Clostridium acetobutylicum, también conocida como el organismo Weizmann. En 1996, Chaim Weizmann fue quien utilizo por primera vez esta bacteria para la producción de acetona a partir de almidón. El butanol era un subproducto de esta fermentación (se producía el doble de butanol). El proceso también origina una cantidad recuperable de H2 y otros subproductos como los ácidos acético, láctico y propiónico, al igual que isopropanol y etanol.

Este combustible puede producirse utilizando la bacteria Ralstonia eutropha H16. Este proceso requiere el uso de un electro-biorreactor con una entrada dióxido de carbono y electricidad.[5]

La principal diferencia que tiene respecto a la producción del etanol es la fermentación de la materia prima y cambios mínimos en la destilación. Las materias primas son las mismas que para el etanol: cultivos energéticos como la remolacha azucarera, caña de azúcar, granos de maíz, trigo y yuca, cultivos energéticos no alimenticios como Panicum virgatum e incluso guayule en América del Norte, así como subproductos como el bagazo, paja y tallos de maíz.[7]

La producción de biobutanol a partir de biomasa y subproductos agrícolas puede ser más eficiente que la de etanol o metanol.[8]

Butanol de algas

El biobutanol puede producirse completamente con energía solar y nutrientes a partir de algas (llamado combustible de algas solar) o diatomeas.[9] Su rendimiento de corriente es muy bajo.

Investigación

Aun cuando la demanda de biocombustibles ha incrementado a más de mil millones de litros (unos 260 millones de galones estadounidenses) de manera anual,[11]

Uso de fuentes alternativas de carbono

Una tecnología prometedora para el desarrollo de la producción de biobutanol se descubrió en el verano del 2011 – La Universidad de Tulane descubrió una cepa de Clostridium llamada “TU-103”, la cual puede convertir casi cualquier forma de celulosa en butanol, y es la única cepa de bacterias del genero Clostridium que puede hacer esto en presencia de oxígeno.[14]

La ingeniería metabólica se emplea para permitir que un organismo utilice un sustrato más barato como lo es el glicerol en lugar de la glucosa. Los procesos fermentativos requieren glucosa derivada de productos alimenticios, es por esto que la producción de butanol puede afectar de manera negativa los suministros de alimentos. El glicerol es una buena alternativa de recurso para la producción de butanol. Mientras que los recursos de glucosa son valiosos y limitados, el glicerol es abundante y tiene un menor costo debido a que es un producto desecho de la producción de biodiésel. La producción de butanol a partir de glicerol es más viable económicamente usando rutas metabólicas existentes en la bacteria Clostridium pasteurianum.[15]

Una combinación de succinato y etanol puede ser fermentada para producir butirato (precursor del combustible butanol) utilizando las rutas metabólicas presentes en la bacteria anaeróbica gram-positiva Clostridium kluyveri. El succinato es un intermediario del ciclo TCA, el cual metaboliza la glucosa. Las bacterias anaerobias como Clostridium acetobutylicum y Clostridium saccharobutylicum también cuentan con estas rutas. El succinato primero es activado y después reducido por una reacción de dos pasos que da 4-hidroxibutirato, el cual es metabolizado más adelante a crotonilo-coenzima A (CoA). Este es después convertido a butirato. Los genes de Clostridium que corresponden a esta vía de producción de butanol fueron clonadas a E. coli.[16]

En 2012 unos investigadores desarrollaron un método para almacenar energía eléctrica en forma de energía química en alcoholes superiores (incluyendo butanol). Estos alcoholes pueden ser utilizados después como combustibles líquidos para el transporte. El grupo lidereado por James Liao realizó ingeniería genética al microorganismo litoautotrofo conocido como Ralstonia Eutropha H16 para producir isobutanol y 3-metil-1-butanol en un bioreactor eléctrico. El dióxido de carbono es la única fuente de carbono para este proceso y la electricidad es usada como el componente energético. El proceso que ellos desarrollaron separa de manera efectiva las reacciones lumínicas y obscuras que ocurren durante la fotosíntesis. Los paneles solares son utilizados para convertir a luz solar en energía eléctrica, la cual después es transformada a un intermediario químico con el uso de microorganismos. Este equipo de investigadores ahora se dedica al proceso de escalamiento de la operación y cree fielmente en que este será más eficiente que el proceso biológico.[17]

Mejoramiento de la eficiencia

A finales del 2012, un nuevo descubrimiento hizo más atractivo al butanol para la industria de los biocombustibles. El científico Hao Feng encontró un método que puede reducir de manera significativa el costo de la energía involucrada en la producción del butanol. Su equipo fue capaz de aislar las moléculas de butanol durante el proceso de fermentación para que estas no maten a los organismos y así produzcan el 100% o más de butanol. Después del proceso de fermentación utilizaron un proceso llamado punto de separación cloud (que utiliza 4 veces menos energía) para recuperar el butanol.[18]

De igual manera, a finales del 2012, utilizando sistemas de ingeniería metabólica, un grupo de investigadores coreanos del KAIST (por sus siglas en inglés Korea Advanced Institute of Science and Technology) han triunfado en demostrar un proceso optimizado para incrementar la producción de butanol por medio de la generación de una bacteria manipulada genéticamente. El profesor Sang Yup Lee del Departamento de Ingeniería Química y Biomolecular, KAIST, Dr. Young Seung en GS Caltex, una gran compañía refinera de aceites Coreana, y el Dr. Yu-Sin Jang del BioFuelChem, una compañía de butanol en Corea, aplicaron un sistema de ingeniería metabólica para mejorar la producción de butanol por medio del mejoramiento del funcionamiento de Clostridium acetobutylicum una de las mejores bacterias conocidas para la producción de butanol. Adicionalmente, el proceso rio abajo o “downstream” fue optimizado y se integró a éste un proceso de recuperación in situ para alcanzar butanol de mayor grado, rendimiento y productividad. La combinación de sistemas de ingenieria metabolica y bioprocesos de optimización han permitido el desarrollo de un proceso capaz de producir más de 585g de butanol a partir de 1.8kg de glucosa, lo cual permite la producción de este importante solvente industrial y un biocombustiblle avanzado a un costo competitivo.[19]

Las bacterias anaerobias C. pasteurianum, C. acetobutylicum, y otras especies de Clostridium tienen rutas metabolicas que convierten glicerol a butanol por medio de fermentación.Sin embargo, la producción de butanol a partir de glicerol por medio de fermentación en C. Pasteurianum es baja. Para contrarrestar esto, un grupo de investigadores utilizaron mutagenesis química para crear una cepa híper productora de butanol. La mejor cepa mutante en este estudio fue "MBEL_GLY2" y produjo 10.8g de butanol por cada 80g de glicerol alimentado a la bacteria. Esta mejora comparada con los 7.6g de butanol producidos por la bacteria nativa.[15]

Muchos organismos tienen la capacidad para producir butanol utilizando una vía dependiente de la acetil-CoA. El mayor problema con esta vía es la primera reacción que implica la condensación de dos moléculas de acetil-CoA a acetoacetil-CoA. Esta reacción es termodinámicamente desfavorable debido a la energía libre de Gibbs positiva asociada con ella (dG = 6.8 kcal/mol).[21]

Un estudio realizado por Ethan I. Lan y James C. Liao intentó utilizar el ATP producido durante la fotosintesis en algas verdeazules para trabajar en torno a la termodinámicamente desfavorable condensación de acetil-CoA a acetoacetil-CoA. El sistema nativo fue rediseñado para hacer reaccionar la acetil-CoA con el ATP y el CO2 para formar un intermediario, malonil-CoA. Este intermediario después reacciona con otro acetil-CoA para formar el deseado acetoacetil-CoA. La energía liberada de la hidrólisis de ATP (dG = -7.3 kcla/mol) hace que esta vía sea más favorable que la condensación estándar. Debido a que las algas verdeazules generan NADPH durante la fotosíntesis se puede asumir que el medio ambiente es rico en NADPH. Por lo tanto, la vía de reacción nativa fue después modificada para utilizar NADPH en lugar del NADH estándar. Todos estos ajustes han dado lugar a un incremento del 400% en la producción de butanol que muestra la importancia de las fuerzas de ATP y de la conducción de cofactores como un principio de diseño en la ingeniería de vías.[22]

Productores

DuPont y BP planean convertir al biobutanol en el primer producto de su esfuerzo conjunto para desarrollar, producir y comercializar biocombustibles de próxima generación.[26]

El número de productores de bioetanol con plantas comerciales en linea que están emergiendo continúa creciendo mensualmente. En la actualidad, hay una serie de plantas de bioetanol, que están siendo convertidos en plantas de biobutanol, lo que debería incrementar el número de productores de butanol que existen en línea.[27]

Other Languages
العربية: بوتانول حيوي
български: Биобутанол
català: Agrobutanol
Deutsch: Biobutanol
English: Butanol fuel
Esperanto: Biobutanolo
Bahasa Indonesia: Bahan bakar butanol
українська: Біобутанол
中文: 丁醇燃料