Axiomas de Zermelo-Fraenkel

En lógica y matemáticas, los axiomas de Zermelo-Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de elección (axiom of choice), como ZFC.

Durante el siglo XIX algunos matemáticos trataron de llevar a cabo un proceso de formalización de la matemática a partir de la teoría de conjuntos. Gottlob Frege intentó culminar este proceso creando una axiomática de la teoría de conjuntos. Lamentablemente, Bertrand Russell descubrió en 1901 una contradicción, la llamada paradoja de Russell. Consecuentemente, a principios del siglo XX se realizaron varios intentos alternativos y hoy en día ZFC se ha convertido en el estándar de las teorías axiomáticas de conjuntos.

Introducción

La teoría de conjuntos es una rama de la matemática relativamente moderna cuyo propósito es estudiar unas entidades llamadas conjuntos, aunque otra parte de esta teoría es reconocida como los fundamentos mismos de las matemáticas. La teoría de conjuntos fue desarrollada por el matemático alemán Georg Cantor a finales del siglo XIX a partir de ciertas conclusiones hechas por él mismo al reflexionar en unos detalles de las series trigonométricas de Fourier. La teoría de conjuntos fue expuesta por Cantor en una serie de artículos y libros, de los cuales pueden destacarse sus Beiträge zur Begründung der transfiniten Mengenlehre.

El propósito de Cantor era proporcionar un método para lidiar con asuntos relacionados al infinito actual, un concepto que fue rehuido y rechazado por algunos matemáticos ( Pitágoras, Gauss, Kronecker) por considerarlo sin significado. Ciertamente Cantor tuvo éxito, si bien su teoría debía ser precisada y sometida a un sistema axiomático, un proyecto que luego fue llevado a cabo principalmente por Frege, Russell, Zermelo, Albert Skolem y Adolf Fraenkel.

Cantor partió de la convicción platonista de que era posible “comprimir” una colección o conjunto de objetos y considerarla como un todo (o mejor dicho, como una sola entidad), y al parecer, aceptando implícitamente los supuestos siguientes:

(i) Un conjunto es una reunión de objetos que cumplen con cierta propiedad (llamados los elementos de ese conjunto) y que, por tanto, queda definido por tal propiedad.

(ii) Un conjunto es una sola entidad matemática, de modo que puede a su vez ser contenido por otro conjunto.

(iii) Dos conjuntos que tengan los mismos elementos son iguales. Así, puede decirse que un conjunto está determinado por sus elementos.

De este modo, Cantor pudo desarrollar su teoría de una forma que en aquel entonces parecía lo suficientemente satisfactoria. Sin embargo, el sistema de Cantor era tan permisivo que dio lugar a resultados contradictorios. Gottlob Frege, que ideó un sistema más preciso, intentó fundamentar adecuadamente la teoría de conjuntos (y por tanto todas las matemáticas), pero, para su desaliento, Bertrand Russell descubrió una paradoja en la teoría de aquél (hoy llamada paradoja de Russell), con lo que el sistema de Frege parecía desbaratarse. A principios del siglo XX, fue el matemático alemán Ernst Zermelo quien puso la teoría de conjuntos sobre una base aceptable reduciéndola a un sistema axiomático más restringido que no permitía la obtención de la Paradoja de Russell. Las ideas de Zermelo fueron después precisadas por Thoralf Skolem y Abraham Fraenkel, resultando de ello la primera teoría axiomática de conjuntos, conocida como teoría de Zermelo-Fraenkel, aunque sería más adecuada llamarla teoría de Zermelo-Fraenkel-Skolem. Otra teoría de conjuntos que evitaba las paradojas de la teoría cantoriana fue desarrollada después, principalmente, por John von Neumann, Paul Bernays y Kurt Gödel. Esta última es hoy llamada, naturalmente, la teoría de von Neumann-Bernays-Gödel.

Other Languages