Astrofísica estelar

Se llama Astrofísica estelar al estudio de la física de las estrellas; su formación, evolución y final, así como sus propiedades y distribución.

Una herramienta fundamental en el estudio de las estrellas es el diagrama de Hertzsprung-Russell.

El estudio de las estrellas y de su evolución es imprescindible para avanzar en nuestro conocimiento del universo, puesto que ellas constituyen los módulos básicos que componen el mismo. La astrofísica estelar hace uso de la observación y el entendimiento teórico, así como también de simulaciones numéricas de la composición interna de las estrellas.

Nacimiento y vida de una estrella

Nebulosa del Rectángulo Rojo.

La formación de las estrellas se produce en regiones densas de polvo y gas molecular, conocidas como nebulosas interestelares. La fuerza de gravedad acerca a los átomos de hidrógeno hacia el centro de la acumulación, haciéndolo más y más denso. Llega un punto en que sus velocidades son tan grandes que el protón de un núcleo de hidrógeno logra vencer la repulsión eléctrica del núcleo en el que impacta, fusionándose con él y otros más hasta formar un núcleo estable de helio.

Una estrella desde su nacimiento tiene diferentes fases de evolución. En sus primeras etapas como embrión es rodeada por los restos de la nube de gas desde la cual se formó. Esa nube de gas es gradualmente disipada por la radiación que emana de la estrella, posiblemente quedando atrás un sistema de objetos menores como planetas, etc.

Pasada la etapa de la infancia, una estrella entra a su madurez, que se caracteriza por un período largo de estabilidad durante el cual, en su núcleo, el hidrógeno se va convirtiendo en helio, liberando enormes cantidades de energía. A esa etapa de estabilidad de la estrella se la llama secuencia principal.

Las características de la estrella resultante dependerán de la magnitud de su masa. Cuanto más masiva sea la estrella, mayor será su luminosidad y con mayor velocidad agotará el hidrógeno de su núcleo, lo que la hará más luminosa, más grande y más caliente. La rápida fusión de hidrógeno en helio también implica un agotamiento de las reservas del primero más pronto en estrellas masivas que para las de menor tamaño. Para una estrella como el Sol su permanencia en la secuencia principal es de unos 10 mil millones de años; una estrella diez veces más masiva será 10 000 veces más brillante pero durará en la secuencia principal sólo unos 100 millones de años.

Cuando todo el hidrógeno del núcleo de la estrella se haya convertido en helio, ésta comenzará su desarrollo. La fusión del helio requiere una mayor temperatura en el núcleo, por lo que la estrella incrementará tanto su tamaño como la densidad de su núcleo.

Other Languages