Astrodinámica

Un satélite en órbita alrededor de la Tierra tiene una velocidad tangencial y una aceleración hacia dentro.

La astrodinámica o mecánica orbital es la aplicación de la balística y la mecánica celeste a los problemas prácticos relativos al movimiento de cohetes y otras naves espaciales. El movimiento de estos objetos se calcula generalmente a partir de las leyes de Newton del movimiento y de la gravitación universal. Es una disciplina central dentro del diseño y control de misiones espaciales.

La mecánica celestial trata más ampliamente la dinámica orbital de los sistemas bajo la influencia de la gravedad, incluyendo tanto las naves espaciales como los cuerpos astronómicos naturales tales como sistemas estelares, planetas, lunas y cometas. La mecánica orbital se centra en las trayectorias de las naves espaciales, incluidas las maniobras orbitales, los cambios en el plano de la órbita y las transferencias interplanetarias, y es utilizada por los planificadores de misiones para predecir los resultados de las maniobras propulsivas. La relatividad general es una teoría más exacta que las leyes de Newton para calcular órbitas, y a veces es necesaria para una mayor precisión o en situaciones de alta gravedad (como órbitas cercanas al Sol). Es la parte de la astronomía que estudia las órbitas, especialmente de los satélites artificiales y sondas espaciales.

El movimiento de los planetas y otros cuerpos naturales es dominio de la mecánica celeste, disciplina que consiste en la aplicación de las leyes de Newton del movimiento y de la ley de la gravitación universal.

Leyes de astrodinámica

Las leyes fundamentales de la astrodinámica son la ley de Newton de la gravitación universal y las leyes de Newton del movimiento, mientras que la herramienta matemática fundamental es su cálculo diferencial.

Cada órbita y trayectoria fuera de las atmósferas es en principio reversible, es decir, en la función espacio-tiempo, el tiempo se invierte. Las velocidades se invierten y las aceleraciones son las mismas, incluidas las debidas a explosiones de cohetes. Por lo tanto, si una ráfaga de cohetes está en la dirección de la velocidad, en el caso invertido es opuesta a la velocidad. Por supuesto, en el caso de explosiones de cohetes no hay inversión total de eventos, en ambos sentidos se utiliza el mismo delta-v y se aplica la misma proporción de masa.

Las asunciones estándar en astrodinámica incluyen la no interferencia de cuerpos externos, la masa insignificante para uno de los cuerpos, y otras fuerzas insignificantes (tales como del viento solar, arrastre atmosférico, etc.). Se pueden hacer cálculos más precisos sin estas suposiciones simplificadoras, pero son más complicados. La mayor exactitud a menudo no hace suficiente diferencia en el cálculo para valer la pena.

Las leyes de Kepler del movimiento planetario pueden derivarse de las leyes de Newton, cuando se supone que el cuerpo en órbita está sujeto solamente a la fuerza gravitacional del atractor central. Cuando un empuje del motor o la fuerza propulsora está presente, las leyes de Newton todavía se aplican, pero las leyes de Kepler son invalidadas. Cuando el empuje se detiene, la órbita resultante será diferente, pero una vez más será descrita por las leyes de Kepler. Las tres leyes son:

  1. La órbita de cada planeta es una elipse con el sol en uno de los focos.
  2. Una línea que une un planeta y el sol barre áreas iguales durante intervalos iguales de tiempo.
  3. Los cuadrados de los períodos orbitales de los planetas son directamente proporcionales a los cubos del eje semi-mayor de las órbitas.
Other Languages
беларуская: Астрадынаміка
brezhoneg: Sternerzhoniezh
Bahasa Indonesia: Mekanika orbital
italiano: Astrodinamica
日本語: 軌道力学
한국어: 궤도역학
Кыргызча: Астродинамикa
Nederlands: Astrodynamica
português: Astrodinâmica
română: Astrodinamică
Simple English: Astrodynamics
slovenčina: Astrodynamika
slovenščina: Astrodinamika
Tagalog: Astrodinamika
українська: Астродинаміка
oʻzbekcha/ўзбекча: Astrodinamika