Aproximación para campos gravitatorios débiles

La aproximación para campos gravitatorios débiles comprende la búsqueda de soluciones aproximadas de las ecuaciones del campo de Einstein de la teoría general de la relatividad.

Métrica aproximada para campo débil y pequeñas velocidades

La aproximación para campos gravitatorios débiles, en el caso de pequeñas velocidades es sencilla de obtener en el caso de pequeñas velocidades sin más que comparar la lagrangiana relativista en el límite de pequeñas velocidades e igualando términos con la lagrangiana clásica.

De acuerdo con los postulados de la relatividad general una partícula se mueve a lo largo de una geodésica de la métrica. Eso implica que la integral de acción escrita en términos e la longitud de arco s, o del tiempo propio τ, viene dada por:

A fin de poder comparar esa expresión con el lagrangiano de una partícula clásica, debemos examinar primeramente el límite de la expresión anterior en ausencia de campo. Para ello usaremos la relación entre tiempo propio y tiempo coordenado en ausencia de campo, y el límite clásico correspondiente:

Donde v es el módulo de la velocidad de la partícula y c la velocidad de la luz. En el caso de existencia de campo gravitatorio podemos hacer que en el mismo límite anterior el lagrangiano relativista coincida con el lagrangiano clásico de una partícula en un campo gravitatorio:

Donde representa el potencial gravitatorio clásico de la partícula. Identificando término a término, elevando al cuadrado y despreciando los términos que se anulan en el límite de pequeñas velocidades tenemos:

Las ecuaciones del movimiento de una partícula en un campo gravitatorio débil dado por las ecuaciones anteriores son:

La primera de las anteriores implica que las coordenadas espaciales varían similarmente al caso clásico, aunque afectados por un factor de ralentización temporal , mientras que la relación entre el tiempo propio y la coordenada temporal se obtiene integrando la segunda ecuación:

Other Languages