Análisis de componentes principales

ACP de una distribución normal multivariante centrada en (1,3) con desviación estándar 3 en la dirección aproximada (0,866, 0,5) y desviación estándar 1 en la dirección perpendicular a la anterior. Los vectores muestran los autovectores de la matriz de correlación escalados mediante la raíz cuadrada del correspondiente autovalor, y desplazados para que su origen coincidan con la media estadística.

En estadística, el análisis de componentes principales (en español ACP, en inglés, PCA) es una técnica utilizada para reducir la dimensionalidad de un conjunto de datos.

Técnicamente, el ACP busca la proyección según la cual los datos queden mejor representados en términos de mínimos cuadrados. Esta convierte un conjunto de observaciones de variables posiblemente correlacionadas en un conjunto de valores de variables sin correlación lineal llamadas componentes principales.

El ACP se emplea sobre todo en análisis exploratorio de datos y para construir modelos predictivos. El ACP comporta el cálculo de la descomposición en autovalores de la matriz de covarianza, normalmente tras centrar los datos en la media de cada atributo.

Debe diferenciarse del análisis factorial con el que tiene similaridades formales y en el cual puede ser utilizado como un método de aproximación para la extracción de factores.

Fundamento

El ACP construye una transformación lineal que escoge un nuevo sistema de coordenadas para el conjunto original de datos en el cual la varianza de mayor tamaño del conjunto de datos es capturada en el primer eje (llamado el Primer Componente Principal), la segunda varianza más grande es el segundo eje, y así sucesivamente. Para construir esta transformación lineal debe construirse primero la matriz de covarianza o matriz de coeficientes de correlación. Debido a la simetría de esta matriz existe una base completa de vectores propios de la misma. La transformación que lleva de las antiguas coordenadas a las coordenadas de la nueva base es precisamente la transformación lineal necesaria para reducir la dimensionalidad de datos. Además las coordenadas en la nueva base dan la composición en factores subyacentes de los datos iniciales.

Una de las ventajas del ACP para reducir la dimensionalidad de un grupo de datos, es que retiene aquellas características del conjunto de datos que contribuyen más a su varianza, manteniendo un orden de bajo nivel de los componentes principales e ignorando los de alto nivel. El objetivo es que esos componentes de bajo orden a veces contienen el aspecto "más importante" de esa información.

Other Languages