Análisis complejo

Gráfico de la función f(z)=(z2-1)(z-2-i)2/(z2+2+2i). La coloración representa el argumento de la función, mientas que el brillo representa el módulo.

El análisis complejo (o teoría de las funciones de variable compleja) es la rama de las matemáticas que en parte investiga las funciones holomorfas, también llamadas funciones analíticas. Una función es holomorfa en una región abierta del plano complejo si está definida en esta región, toma valores complejos y por último es diferenciable en cada punto de esta región abierta con derivadas continuas.

El que una función compleja sea diferenciable en el sentido complejo tiene consecuencias mucho más fuertes que la diferenciabilidad usual en los reales. Por ejemplo, toda función holomorfa se puede representar como una serie de potencias en algún disco abierto donde la serie converge a la función. Si la serie de potencias converge en todo el plano complejo se dice que la función es entera. Una definición relacionada con función holomorfa es función analítica: una función compleja sobre los complejos que puede ser representada como una serie de potencias. De modo que toda función holomorfa también cumple la definición de función analítica pero no toda función analítica es holomorfa. En particular, las funciones holomorfas son infinitamente diferenciables, un hecho que es marcadamente diferente de lo que ocurre en las funciones reales diferenciables. La mayoría de las funciones elementales como lo son, por ejemplo, algunos polinomios, la función exponencial y las funciones trigonométricas, son holomorfas.

Historia

Augustin Louis Cauchy, uno de los grandes precursores del análisis complejo.

El análisis complejo es una de las ramas clásicas de las matemáticas que tiene sus raíces más allá del siglo XIX. Los nombres destacados en su desarrollo son Euler, Gauss, Riemann, Cauchy, Weierstrass y muchos más en el siglo XX. Tradicionalmente, el análisis complejo, en particular la teoría de las aplicaciones conformes, tiene muchas aplicaciones en ingeniería, pero es ampliamente usada también en teoría de números analítica. En tiempos modernos se convirtió en popular gracias al empuje de la dinámica compleja y los dibujos de fractales, producidos por la iteración de funciones holomorfas, de los cuales el más popular es el conjunto de Mandelbrot. Otras aplicaciones importantes del análisis complejo son las de la teoría de cuerdas, una teoría de campos cuánticos conforme-invariante.

Other Languages