Al-Juarismi

Sello emitido el 6 de septiembre de 1983 en la Unión Soviética conmemorando el aniversario n.º 1200 (aproximado) del matemático persa.

Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī (Abu Yāffar) (أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر), conocido generalmente como al-Juarismi, fue un matemático, astrónomo y geógrafo; persa[2] musulmán, que vivió aproximadamente entre 780 y 850.

Poco se conoce de su biografía, a tal punto que existen discusiones no saldadas sobre su lugar de nacimiento. Algunos sostienen que nació en Bagdad. Otros, siguiendo el artículo de Gerald Toomer[4] halla que se trata de un error de interpretación de Toomer, debido a un error de transcripción (la falta de la conectiva wa) en una copia del manuscrito de al-Tabari. No será este el último desacuerdo entre historiadores que encontraremos en las descripciones de la vida y las obras de al-Juarismi. Estudió y trabajó en Bagdad en la primera mitad del siglo IX, en la corte del califa al-Mamun. Para muchos, fue el más grande de los matemáticos de su época.

Debemos a su nombre y al de su obra principal, " Hisāb al-ŷabr wa'l muqābala", (حساب الجبر و المقابلة) nuestras palabras álgebra, guarismo y algoritmo. De hecho, es considerado como el padre del álgebra y como el introductor de nuestro sistema de numeración denominado arábigo.

Hacia 815 al-Mamun, séptimo califa Abásida, hijo de Harún al-Rashid, fundó en su capital, Bagdad, la Casa de la sabiduría (Bayt al-Hikma), una institución de investigación y traducción que algunos han comparado con la Biblioteca de Alejandría. En ella se tradujeron al árabe obras científicas y filosóficas griegas e hindúes. Contaba también con observatorios astronómicos. En este ambiente científico y multicultural se educó y trabajó al-Juarismi junto con otros científicos como los hermanos Banu Musa, al-Kindi y el famoso traductor Hunayn ibn Ishaq. Dos de sus obras, sus tratados de álgebra y astronomía, están dedicadas al propio califa.

Álgebra

Primera página de Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala.

En su tratado de álgebra Hisāb al-ŷabr wa'l muqābala (حساب الجبر و المقابلة, Compendio de cálculo por compleción y comparación), obra eminentemente didáctica, se pretende enseñar un álgebra aplicada a la resolución de problemas de la vida cotidiana del imperio islámico de entonces. La traducción de Rosen de las palabras de al-Juarizmi describiendo los fines de su libro dan cuenta de que el sabio pretendía enseñar:

... aquello que es fácil y más útil en aritmética, tal que los hombres lo requieren constantemente en casos de herencia, legados, particiones, juicios, y comercio, y en todos sus tratos con los demás, o cuando se trata de la mensura de tierras, la excavación de canales, cálculos geométricos, y otros objetos de varias clases y tipos.

Traducido al latín por Gerardo de Cremona, se utilizó en las universidades europeas como libro de texto hasta el siglo XVI. Es posible que antes de él se hubiesen resuelto ecuaciones concretas, pero éste es el primer tratado conocido en el que se hace un estudio exhaustivo.

Luego de presentar los números naturales, al-Juarismi aborda la cuestión principal en la primera parte del libro: la solución de ecuaciones. Sus ecuaciones son lineales o cuadráticas y están compuestas de unidades, raíces y cuadrados; para él, por ejemplo, una unidad era un número, una raíz era y un cuadrado . Aunque en los ejemplos que siguen usaremos la notación algebraica corriente en nuestros días para ayudar al lector a entender las nociones, es de destacar que al-Juarizmi no empleaba símbolos de ninguna clase, sino sólo palabras.

Primero reduce una ecuación a alguna de seis formas normales:

  1. Cuadrados iguales a radicales.
  2. Cuadrados iguales a números.
  3. Raíces iguales a números.
  4. Cuadrados y raíces iguales a números, por ejemplo
  5. Cuadrados y números iguales a raíces, por ejemplo
  6. Raíces y números iguales a cuadrados, por ejemplo

La reducción se lleva a cabo utilizando las operaciones de al-ŷabr ("compleción", el proceso de eliminar términos negativos de la ecuación) y al-muqabala ("balanceo", el proceso de reducir los términos positivos de la misma potencia cuando suceden de ambos lados de la ecuación). Luego, al-Juarismi muestra como resolver los seis tipos de ecuaciones, usando métodos de solución algebraicos y geométricos. Por ejemplo, para resolver la ecuación , escribe:

... un cuadrado y diez raíces son iguales a 39 unidades. Entonces, la pregunta en este tipo de ecuación es aproximadamente así: cuál es el cuadrado que, combinado con diez de sus raíces, dará una suma total de 39. La manera de resolver este tipo de ecuación es tomar la mitad de las raíces mencionadas. Ahora, las raíces en el problema que tenemos ante nosotros son diez. Por lo tanto, tomamos 5 que multiplicadas por sí mismas dan 25, una cantidad que agregarás a 39 dando 64. Habiendo extraído la raíz cuadrada de esto, que es 8, sustraemos de allí la mitad de las raíces, 5, resultando 3. Por lo tanto el número tres representa una raíz de este cuadrado.

Álgebra[5]

Sigue la prueba geométrica por compleción del cuadrado, que no expondremos aquí. Señalaremos sin embargo que las pruebas geométricas que usa al-Juarismi son objeto de controversia entre los expertos. La cuestión, que permanece sin respuesta, es si estaba familiarizado con el trabajo de Euclides. Debe recordarse, en la juventud de al-Juarismi y durante el reinado de Harun al-Rashid, al-Hajjaj había traducido los "Elementos" al árabe, y era uno de los compañeros de al-Juarismi en la Casa de la Sabiduría. Esto avalaría la posición de Toomer (op.cit.). Rashed comenta[8] sobre las similitudes metodológicas con el texto hebreo Mishnat ha Middot, de mediados del siglo II.

Continúa el Hisab al-ŷabr wa'l-muqabala examinando cómo las leyes de la aritmética se extienden a sus objetos algebraicos. Por ejemplo, muestra cómo multiplicar expresiones como . Rashed (op. cit.) encuentra sus formas de resolución extremadamente originales, pero Crossley[10]

La parte siguiente consiste en aplicaciones y ejemplos. Describe reglas para hallar el área de figuras geométricas como el círculo, y el volumen de sólidos como la esfera, el cono y la pirámide. Esta sección, ciertamente, tiene mucha mayor afinidad con los textos hebreos e indios que con cualquier obra griega. La parte final del libro se ocupa de las complejas reglas islámicas de herencia, pero requiere poco del álgebra que expuso anteriormente, más allá de la resolución de ecuaciones lineales.

Other Languages
Alemannisch: Al-Chwarizmi
azərbaycanca: Əl-Xarəzmi
башҡортса: Әл-Хәрәзми
žemaitėška: Al-Khwarizmi
беларуская (тарашкевіца)‎: Мухамад Аль-Харэзьмі
нохчийн: Аль-Хорезми
čeština: Al-Chorezmí
Deutsch: Al-Chwarizmi
Zazaki: Xarezmi
Ελληνικά: Αλ-Χουαρίζμι
Esperanto: Al-Ĥorazmi
Võro: Al-Horazmi
français: Al-Khwârizmî
贛語: 哈嗱嗞咪
galego: Al-Khwarizmi
hrvatski: Al-Hvarizmi
Հայերեն: Ալ-Խորեզմի
íslenska: Al-Khwarizmi
la .lojban.: kuarizmis
қазақша: Әл-Хорезми
한국어: 콰리즈미
Kurdî: Xwarezmî
Latina: Algorismus
Limburgs: Al-Chwarizmi
lietuvių: Chorezmis
latviešu: Al-Horezmī
македонски: Ел-Хорезми
монгол: Аль-Хорезми
Mirandés: Al-Khwarizmi
Nederlands: Al-Chwarizmi
norsk nynorsk: Al-Khwarizmi
norsk bokmål: Al-Khwârizmî
Piemontèis: Al-Huwarizmi
português: Al-Khwārizmī
română: Al-Khwarizmi
русский: Аль-Хорезми
русиньскый: Ал-Хорезмі
sicilianu: Al-Khwarizmi
srpskohrvatski / српскохрватски: Al-Hvarizmi
Simple English: Al-Khwarizmi
slovenščina: Al Hvarizmi
српски / srpski: Мухамед ел Хорезми
Kiswahili: Khwarizmi
Türkmençe: Al-Horezmi
Türkçe: Hârizmî
татарча/tatarça: Әл-Хәрәзми
українська: Аль-Хорезмі
oʻzbekcha/ўзбекча: Al-Xorazmiy
West-Vlams: Al-Khwarizmi
中文: 花拉子米
粵語: 花剌子密