Acoplamiento de momento angular

En mecánica cuántica, el procedimiento de construir estados propios del momento angular total (estados de un sistema con valores bien definidos del momento angular) a partir de los estados propios de los momentos angulares individuales se llama acoplamiento de momentos angulares. Se utiliza cuando, a causa de una interacción física entre dos momentos angulares, estos ya no son constantes del movimiento independientes (sus valores individuales ya no siguen leyes de conservación), pero la suma de los dos momentos angulares normalmente sí lo es. Por ejemplo, el espín y el movimiento de un electrón pueden interaccionar por acoplamiento espín-órbita, en cuyo caso es útil acoplar sus momentos angulares orbital y de espín. O dos partículas cargadas, cada una con un momento angular bien definido, pueden interaccionar por fuerzas de Coulomb, y entonces es útil acoplar los momentos angulares de cada partícula resultando en un momento angular total, como paso para la resolución de la ecuación de Schrödinger de dos partículas.

El acoplamiento de momentos angulares en átomos es importante para explicar experimentos de espectroscopia atómica. El acoplamiento de momentos angulares de espines electrónicos es de importancia en la parte de la química cuántica que estudia la magnetoquímica, y en la parte de la física cuántica que estudia la física de la materia condensada.

En astronomía, el acoplamiento de momentos angulares refleja la ley general de conservación del momento angular que también es válida en objetos celestes. En casos simples, la dirección del vector momento angular se desprecia, y el acoplamiento espín-órbita es la razón entre la frecuencia con la que un planeta u otro cuerpo celeste rota sobre su propio eje y aquella con la que orbita alrededor de otro cuerpo. Esto se conoce comúnmente como resonancia orbital. Frecuentemente, los efectos físicos subyacentes son las fuerzas de marea.

Teoría general y detalles del origen

El momento angular es una propiedad de los sistemas físicos, y es una constante de movimiento (propiedad conservada, independiente del tiempo y bien definida) en dos situaciones: (i) El sistema está sujeto a un campo potencial de simetría esférica. (ii) El sistema se mueve -en sentido mecanocuántico- en el espacio isótropo. En ambos casos el operador del momento angular conmuta con el hamiltoniano del sistema. Por el principio de indeterminación de Heisenberg esto significa que el valor del momento angular y el de la energía del sistema pueden tener valores arbitrariamente precisos simultáneamente.

Un ejemplo de la primera situación es un átomo cuyos electrones sólo estén expuestos al campo culombiano de su núcleo. En este modelo, el Hamiltoniano atómico es la suma de las energías cinéticas de los electrones y de las interacciones electrón-núcleo, de simetría esférica. Así, despreciando la interacción interelectrónica (y otras perturbaciones menores como el acoplamiento espín-órbita), el momento angular orbital l de cada electrón conmuta con el del Hamiltoniano total.

Un ejemplo de la segunda situación es un rotor rígido moviéndose en un espacio libre de campos. Un rotor rígido tiene un momento angular bien definido e independiente del tiempo.

Estas dos situaciones se originan en la mecánica clásica. Un tercer tipo de momento angular conservado, asociado con la magnitud cuántica del espín, no tiene análogo clásico. Sin embargo, todas las reglas del acoplamiento de momentos angulares se aplican también al espín.

En general, la conservación del momento angular implica simetría rotacional completa (descrita por los grupos de simetría SO(3) y SU(2)), y vicecersa. Si dos o más sistemas físicos tienen conservación de sus momentos angulares por separado, puede ser útil sumar estos momentos en un momento angular total, que será una propiedad conservada del sistema combinado. La construcción de estados propios del momento angular total a partir de los estados propios de los momentos angulares de los subsistemas individuales se denomina acoplamiento del momento angular.

La aplicación del acoplamiento del momento angular es útil cuando hay una interacción entre subsistemas que, sin ella, tendrían momentos angulares conservados. La interacción rompe la simetría esférica de los subsistemas, pero el momento angular total sigue siendo una constante del movimiento, lo que resulta de utilidad para resolver la ecuación de Schrödinger.

En mecánica cuántica, este tipo de acoplamiento también se produce entre momentos angulares pertenecientes a distintos espacios de Hilbert de un mismo objeto, por ejemplo su espín y su momento magnético orbital.

Other Languages