Óptica

El arcoiris es un fenómeno óptico natural.
La óptica incluye el estudio de la dispersión de la luz.

La óptica (del latín medieval opticus, relativo a la visión, proveniente del griego clásico ὀπτικός, optikós)[3]

La mayoría de los fenómenos ópticos pueden explicarse utilizando la descripción electrodinámica clásica de la luz. Sin embargo, la óptica práctica generalmente utiliza modelos simplificados. El más común de estos modelos, la óptica geométrica, trata la luz como una colección de rayos que viajan en línea recta y se desvían cuando atraviesan o se reflejan en las superficies. La óptica física es un modelo de la luz más completo, que incluye efectos ondulatorios como la difracción y la interferencia, que no se pueden abordar mediante la óptica geométrica.

Algunos fenómenos dependen del hecho de que la luz muestra indistintamente propiedades como onda y partícula. La explicación de estos efectos requiere acudir a la mecánica cuántica. Al considerar las propiedades de la luz similares a las de las partículas, se puede modelar como un conjunto de fotones individuales. La óptica cuántica se ocupa de la aplicación de la mecánica cuántica a los sistemas ópticos.

La óptica como ciencia es un campo muy relevante, y es estudiada en muchas disciplinas con las que está íntimamente relacionada, como la astronomía, varios campos de la ingeniería, la fotografía y la medicina (particularmente la oftalmología y la optometría). Las aplicaciones prácticas de la óptica se encuentran en una gran variedad de tecnologías, incluidos espejos, lentes, telescopios, microscopios, equipos láser y sistemas de fibra óptica.

Historia

La lente de Nimrud, descubierta en ruinas del Imperio asirio

Las primeras aplicaciones de la óptica muy probablemente comenzaron con el desarrollo de lentes en el antiguo Egipto y en Mesopotamia. Las primeras lentes conocidas, hechas de cristal pulido, a menudo cuarzo, datan ya del año 700 a.C., como la lente de Nimrud,[5]

La filosofía griega sobre la óptica se dividió en dos ideas opuestas sobre cómo funcionaba la vista: la "teoría de la visión" y la "teoría de la emisión".[6]​ Un enfoque consideraba que la visión provenía de los propios objetos, que emitían copias de sí mismos (llamadas eidola) que eran captadas por el ojo. Con muchos propagadores, entre ellos Demócrito, Epicuro, Aristóteles y sus seguidores.

Platón fue el primero que articuló la teoría de la emisión, la idea de que la visión se logra mediante rayos emitidos por los ojos. También habló sobre la inversión en los espejos (de la paridad entre un objeto y su imagen reflejada) en el Timaeus.[10]

Reproducción de una página de un manuscrito de Ibn Sahl que demuestra su conocimiento de la ley de la refracción.

Durante la Edad Media, las ideas griegas sobre la óptica fueron resucitadas y ampliadas por varios escritores en el mundo islámico. Uno de los primeros fue Al-Kindi (c 801-73), que escribió sobre los méritos de las ideas aristotélicas y euclidianas de la óptica, favoreciendo la teoría de la emisión, ya que podía cuantificar mejor los fenómenos ópticos.[21]

En la Europa medieval del siglo XIII, el obispo inglés Roberto Grosseteste escribió sobre una amplia gama de temas científicos y discutió la luz desde cuatro perspectivas diferentes: una epistemología de la luz, una metafísica o cosmogonía de la luz, una etiología o física de la luz y un teología de la luz,[22]​ basándose en las obras de Aristóteles y el platonismo. El discípulo más famoso de Grosseteste, Roger Bacon, escribió obras que citan una amplia gama de trabajos ópticos y filosóficos por entonces traducidos, incluidos los de Alhacén, Aristóteles, Avicena, Averroes, Euclides, al-Kindi, Ptolomeo, Tideus y Constantino el Africano. Bacon pudo usar partes de esferas de vidrio como lupas para demostrar que la luz se refleja en los objetos en lugar de liberarse de ellos.

Los primeros anteojos prácticos fueron inventados en Italia alrededor de 1286.[29]

Ocular de un telescopio galileano (c. 1620)

Hacia el año 1600, Galileo Galilei dirigió su primitivo telescopio refractor hacia el firmamento, dando origen a la astronomía moderna, que podía servirse de instrumentos de aumento para ver los detalles de los cuerpos celestes. Siguiendo su estela, a principios del siglo XVII Johannes Kepler amplió la óptica geométrica en sus escritos, cubriendo las lentes, los reflejos de espejos planos y curvos, los principios de la cámara estenopeica, las leyes de los cuadrados inversos que rigen la intensidad de la luz y las explicaciones ópticas de fenómenos astronómicos como los eclipses lunares y solares y el paralaje astronómico. También fue capaz de deducir correctamente el papel de la retina como el órgano real que percibe las imágenes, y finalmente fue capaz de cuantificar científicamente los efectos de los diferentes tipos de lentes que los fabricantes de gafas habían estado observando durante los últimos 300 años.[31]

Portada de la primera edición del tratado Opticks, de Isaac Newton

La teoría óptica progresó a mediados del siglo XVII con los tratados escritos por el filósofo René Descartes, en los que explicaba una gran variedad de fenómenos ópticos, incluyendo la reflexión y la refracción al asumir que la luz era emitida por los objetos que la producían.[32]

Miroscopio de Robert Hooke, grabado de su obra Micrographia.

Entretanto, los instrumentos ópticos empezaron a experimentar considerables mejoras técnicas, que permitieron a la ciencia adentrarse en campos hasta entonces inaccesibles, desde lo extremadamente pequeño (representado por el descubrimiento de los microbios) hasta lo inconcebiblemente grande (con un conocimiento cada vez mayor del sistema solar). El microscopio, considerablemente evolucionado desde el primitivo modelo de Anton van Leeuwenhoek (1650), permitió iniciar el estudio de las células gracias a los trabajos pioneros de Robert Hooke, recogidos en su tratado Micrographia. Por otro lado, los telescopios refractores habían alcanzado su límite teórico de resolución, limitado por la aberración cromática, lo que en parte contribuyó al nacimiento de un nuevo tipo de instrumento: el telescopio reflector. Fue Isaac Newton quien construyó el primero de estos instrumentos en 1668. Este fue el inicio de una enconada carrera, que duró dos siglos y medio, entre los dos tipos de telescopios: refractores (lentes) y reflectores (espejos). La invención de las lentes acromáticas hacia 1750, permitió solucionar el problema de la aberración cromática, lo que dio inicialmente la primacía a los telescopios refractores sobre los primitivos telescopios reflectores, lastrados por la escasa luminancia y la poca durabilidad de los espejos de speculum, una aleación de bronce que se oxidaba con relativa facilidad. En esta época se sentaron las bases del desarrollo de los grandes refractores, que con Joseph von Fraunhofer adquirieron su madurez funcional a finales del siglo XVIII, convirtiéndose en la técnica dominante en el siglo XIX. También fue Fraunhofer quien sentaría las bases de una nueva ciencia que forma parte de la óptica: la espectroscopia. Los avances en la fabricación de lentes permitieron a su vez el desarrollo de los instrumentos utilizados en geodesia, permitiendo completar con una precisión hasta entonces impensable la medición del arco de meridiano de París en 1798, lo que permitiría establecer la unidad de longitud del sistema internacional: el metro.

La óptica newtoniana fue generalmente aceptada hasta principios del siglo XIX, cuando Thomas Young y Augustin Fresnel llevaron a cabo experimentos sobre la interferencia de la luz, que establecieron firmemente su naturaleza ondulatoria. El famoso experimento de la doble rendija de Young, con el que se hacía patente el fenómeno de la interferencia, demostró que la luz seguía el principio de la superposición de estratos, que es una propiedad ondulatoria no prevista por la teoría corpuscular de Newton. Este trabajo condujo a una teoría de la difracción de la luz y abrió un área completa de estudio en la óptica física. La óptica ondulatoria[34]

Tubo de Crookes

La segunda mitad del siglo XIX contempló una serie de descubrimientos que sentarían las bases del desarrollo de instrumentos ópticos a lo largo del siglo XX. En el campo de los telescopios, la posibilidad de depositar una película de aluminio sobre una base de vidrio, decantó de forma ya definitiva la carrera entre los dos tipos de telescopios, decidiéndose a favor de los de espejos, que han seguido aumentando de tamaño sin cesar desde entonces. Así mismo, se descubrió la base de la fotografía con los trabajos de Niépce, que a su vez propiciaría la aparición del cine unas décadas después. Otro invento de finales del siglo XIX, el tubo de rayos catódicos, permitiría desarrollar unos años después las pantallas de televisión. En este período también vio la luz otro tipo de instrumento científico, el interferómetro, que sirvió para dar un inesperado soporte a la teoría de la relatividad y que con el paso del tiempo ha pasado a formar parte de equipos de medición de altísima precisión, como el LIGO, que ha permitido confirmar la existencia de ondas gravitatorias a comienzos del siglo XXI.

La aparente confirmación de la naturaleza ondulatoria de la luz debido a su carácter de radiación electromagnética, llevó a un callejón sin salida, generando un intenso debate a lo largo de medio siglo acerca de la existencia del éter, un medio hipotético que se consideraba imprescindible para posibilitar la propagación de las ondas de luz. Se realizaron sin éxito numerosos experimentos para demostrar su existencia (como el famoso experimento de Michelson y Morley de 1887), y no sería hasta 1905 cuando Albert Einstein, con su Teoría de la relatividad especial, estableció el papel clave de la velocidad de la luz como una de las constantes fundamentales de la naturaleza, resolviendo de una vez por todas la cuestión del éter, descartando definitivamente su existencia.[35]

El siguiente desarrollo en la teoría óptica llegó en 1899, cuando Max Planck modeló correctamente la radiación del cuerpo negro, al asumir que el intercambio de energía entre la luz y la materia solo ocurría en cantidades discretas que denominó cuantos.[40]

Conjunto interferométrico de telescopios en Paranal

La óptica cuántica adquirió importancia práctica con las invenciones del máser en 1953 y del láser en 1960.[41]​ Siguiendo el trabajo de Paul Dirac en la teoría cuántica de campos, George Sudarshan, Roy Jay Glauber y Leonard Mandel aplicaron la teoría cuántica al campo electromagnético en los años 1950 y 1960 para obtener una comprensión más detallada de la fotodetección y del comportamiento estadístico de la luz.

Otro hito importante en el campo de la aplicación práctica de dispositivos ópticos son los LED, cuyo principio de funcionamiento (la electroluminiscencia) fue descubierto en 1903. Se empezaron a producir industrialmente en la década de 1950, hasta hacerse omnipresentes en las pantallas de todo tipo de aparatos de consumo de masas, como teléfonos móviles o televisores.

Other Languages
Afrikaans: Optika
العربية: بصريات
asturianu: Óptica
azərbaycanca: Optika
تۆرکجه: اوپتیکا
Boarisch: Optik
žemaitėška: Optėka
беларуская: Оптыка
беларуская (тарашкевіца)‎: Оптыка
български: Оптика
བོད་ཡིག: འོད་རིག་པ་
bosanski: Optika
català: Òptica
کوردی: ئۆپتیک
čeština: Optika
Cymraeg: Opteg
dansk: Optik
Deutsch: Optik
Ελληνικά: Οπτική
English: Optics
Esperanto: Optiko
eesti: Optika
euskara: Optika
estremeñu: Ótica
فارسی: نورشناسی
suomi: Optiikka
français: Optique
Nordfriisk: Optik
furlan: Otiche
Gaeilge: Optaic
galego: Óptica
עברית: אופטיקה
हिन्दी: प्रकाशिकी
hrvatski: Optika
magyar: Optika
Հայերեն: Օպտիկա
interlingua: Optica
Bahasa Indonesia: Optika
Ido: Optiko
íslenska: Ljósfræði
italiano: Ottica
日本語: 光学
Basa Jawa: Optika
ქართული: ოპტიკა
қазақша: Оптика
한국어: 광학
kurdî: Optîk
Latina: Optica
Lëtzebuergesch: Optik
lietuvių: Optika
latviešu: Optika
македонски: Оптика
монгол: Оптик
Bahasa Melayu: Optik
Mirandés: Ótica
Nederlands: Optica
norsk nynorsk: Optikk
norsk: Optikk
occitan: Optica
polski: Optyka
Piemontèis: Òtica
português: Óptica
română: Optică
русский: Оптика
русиньскый: Оптіка
sicilianu: Òttica
Scots: Optics
srpskohrvatski / српскохрватски: Optika
Simple English: Optics
slovenčina: Optika (odbor)
slovenščina: Optika
Soomaaliga: Araga
shqip: Optika
српски / srpski: Оптика
Seeltersk: Optik
svenska: Optik
தமிழ்: ஒளியியல்
тоҷикӣ: Оптика
Tagalog: Optika
Türkçe: Optik
татарча/tatarça: Оптика
українська: Оптика
اردو: بصریات
oʻzbekcha/ўзбекча: Optika
Tiếng Việt: Quang học
Winaray: Optika
Wolof: Ngiste
吴语: 光学
ייִדיש: אפטיק
中文: 光学
粵語: 光學