Ácido γ-aminobutírico

 
Ácido gama-aminobutírico
Gamma-Aminobuttersäure - gamma-aminobutyric acid.svg
Fórmula estructural simplificada
GABA 3D ball.png
C=negro, H=blanco, O=rojo, N=azul
Nombre IUPAC
Ácido 4-aminobutanóico
General
Fórmula semidesarrollada C4H9NO2
Fórmula estructural Imagen de la estructura
Fórmula molecular ?
Identificadores
Número CAS 56-12-2[1]
Número RTECS ES6300000
ChEBI 16865
ChemSpider 116
DrugBank DB02530
PubChem 119
UNII 2ACZ6IPC6I
KEGG D00058
Propiedades físicas
Apariencia Polvo blanco cristalino
Densidad 1.11 kg/ m3; 0,00111 g/ cm3
Masa molar 103.120 g/ mol
Punto de fusión 203,7 °C (477 K)
Punto de ebullición 247,9 °C (521 K)
Propiedades químicas
Acidez 4.23 (carboxyl), 10.43 (amino)[2] pKa
Solubilidad en agua 130 g/100 mL
log P −3.17
Riesgos
Riesgos principales Irritante, dañino
LD50 12,680 mg/kg (ratón, oral)
Valores en el SI y en condiciones estándar
(25 °C y 1 atm), salvo que se indique lo contrario.
[ editar datos en Wikidata]

El ácido γ-aminobutírico (GABA) es el principal neurotransmisor inhibidor en el sistema nervioso central (SNC) de mamíferos. Desempeña el papel principal en la reducción de excitabilidad neuronal a lo largo del sistema nervioso. En humanos, GABA es directamente responsable de la regulación del tono muscular.[3]

A pesar de que, en términos químicos, es un aminoácido, en las comunidades científica y médica rara vez se refieren a GABA como tal debido a que el término "aminoácido" por convención se refiere a los α aminoácidos y GABA no lo es. Además no se considera como parte de alguna proteína.

En la displejía espástica en humanos, la absorción de GABA se ve afectada de forma negativa por los nervios dañados por la lesión en las neuronas superiores motoras propias de la condición lo cual lleva a desarrollar hipertonía muscular señalizada por aquellos nervios que son incapaces de absorber GABA.

Función

Neurotransmisor

En vertebrados, GABA actúa en las sinapsis inhibidoras en el cerebro uniéndose a receptores transmembranales específicos en la membrana plasmática tanto de los procesos presinápticos como postsinápticos. Esta unión provoca la apertura de canales iónicos que permiten el flujo tanto de iones cloruro hacia dentro como el flujo de cationes de potasio hacia fuera. Esto resulta en un cambio negativo en el potencial transmembranal, generalmente provocando una hiperpolarización. Se conocen dos clases principales de receptores GABA: GABAA, en el que el receptor forma parte de un complejo de canal iónico regulado por ligando, y el receptor metabotrópico GABAB los cuales son receptores acoplados a proteínas G que abren o cierran los canales iónicos por medio de proteínas G intermediarias.

La producción, liberación, acción y degradación de GABA en una sinapsis GABAérgica

Las neuronas que producen y secretan GABA son conocidas como neuronas GABAérgicas, y tienen principalmente funciones de inhibición en los receptores de vertebrados adultos. Las células espinosas medias (MDC por sus siglas en inglés) son el típico ejemplo de células GABAérgicas inhibidoras del SNC. En cambio, GABA tiene funciones tanto inhibidoras como excitatorias en insectos, mediando la activación muscular en las sinapsis entre los nervios y las células musculares, y también en la estimulación de ciertas glándulas.[5]

Los receptores de GABAA son canales de cloruro activados por la unión a ligando; esto es, permiten el paso a través de la membrana de iones cloruro una vez activados por la unión a GABA. El que este flujo sea excitatorio/despolarizante (hacer la diferencia de voltaje menos negativa), shunting (no tiene efecto alguno en la membrana) o inhibitorio/hiperpolarizante (hacer la diferencia de voltaje más negativa) depende en la dirección del flujo de los iones cloruro. Cuando el flujo neto de iones cloruro es hacia el exterior, GABA cumple su función excitatoria/despolarizante. Cuando el flujo neto es hacia el interior de la célula, GABA funge como inhibidor/hiperpolarizante. Cuando el flujo neto del cloruro es cercano a cero, la acción de GABA se conoce como shunting. Este tipo de inhibición shunting no tiene efecto directo en el potencial de la membrana de la célula; sin embargo, minimiza el efecto de cualquier estímulo sináptico simultáneo al reducir la resistencia eléctrica de la membrana celular (en esencia, equivalente a la ley de Ohm). Un interruptor en la maquinaria molecular que controla la concentración de cloruro, y por lo tanto la dirección del flujo iónico, es responsable de los cambios en la función de GABA entre las etapas neonatal y adulta. Esto es que el papel que desempeña GABA cambia de excitatorio a inhibidor conforme el cerebro se desarrolla hacia la adultez.[6]

Desarrollo cerebral

Aunque GABA es un neurotransmisor inhibitorio en el cerebro maduro, sus funciones son principalmente excitatorias en el cerebro en desarrollo.[9]

Este efecto se repitió en las rebanadas de cerebro al añadir otras fuentes de energía en el medio suplementado con glucosa, como piruvato y lactato.[15]

En las etapas de desarrollo que preceden a la formación de contactos sinápticos, GABA es sintetizado por neuronas y actúa tanto como mediador de señalización autocrina (actúa en la misma célula que lo secreta) como paracrina (actúa en las células próximas).[18]

GABA regula la proliferación,[24]

GABA también regula el crecimiento de las células madre embrionarias y neurales. GABA puede influir en el desarrollo de progenitores neurales por medio de la expresión del factor neurotrófico derivado del cerebro (BDNF por sus siglas en inglés).[26]

Más allá del sistema nervioso

Expresión de mRNA de la variante embrionaria de la enzima productora de GABA, GAD67, en la sección coronal del cerebro de la rata Wistar de un día de nacido con la expresión más alta en la zona subventricular (zsv); de Popp et al., 2009.[27]

Se han demostrado mecanismos GABAérgicos en distintos tejidos y órganos periféricos incluyendo el intestino, estómago, páncreas, las trompas de falopio, el útero, ovario, testículos, riñón, vejiga, pulmón e hígado.[28]

En el 2007, un sistema excitatorio GABAérgico fue descrito en el epitelio de las vías respiratorias. El sistema se activa después de la exposición a alergénos y puede estar involucrado en los mecanismos del asma.[31]

Other Languages